@article{AIHPC_2003__20_1_1_0, author = {Gugat, M. and Leugering, G.}, title = {Global boundary controllability of the de {St.} {Venant} equations between steady states}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1--11}, publisher = {Elsevier}, volume = {20}, number = {1}, year = {2003}, mrnumber = {1958159}, zbl = {1032.93030}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_2003__20_1_1_0/} }
TY - JOUR AU - Gugat, M. AU - Leugering, G. TI - Global boundary controllability of the de St. Venant equations between steady states JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 1 EP - 11 VL - 20 IS - 1 PB - Elsevier UR - http://archive.numdam.org/item/AIHPC_2003__20_1_1_0/ LA - en ID - AIHPC_2003__20_1_1_0 ER -
%0 Journal Article %A Gugat, M. %A Leugering, G. %T Global boundary controllability of the de St. Venant equations between steady states %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 1-11 %V 20 %N 1 %I Elsevier %U http://archive.numdam.org/item/AIHPC_2003__20_1_1_0/ %G en %F AIHPC_2003__20_1_1_0
Gugat, M.; Leugering, G. Global boundary controllability of the de St. Venant equations between steady states. Annales de l'I.H.P. Analyse non linéaire, Volume 20 (2003) no. 1, pp. 1-11. http://archive.numdam.org/item/AIHPC_2003__20_1_1_0/
[1] Exact minimum-time control of a distributed system using a traveling wave formulation, J. Optim. Theory Appl. 73 (1992) 149-167. | MR | Zbl
, ,[2] Boundary controllability of nonlinear hyperbolic systems, SIAM J. Control 7 (1969) 198-212. | MR | Zbl
,[3] Nonlinear hyperbolic problems with solutions on preassigned sets, Michigan Math. J. 17 (1970) 193-209. | MR | Zbl
,[4] A Lyapunov approach to control irrigation canals modeled by Saint-Venant equations, in: ECC Karlsruhe, 1999.
, , ,[5] Practical Aspects of Computational River Hydraulics, Pitman, London, 1980.
, , ,[6] Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin, 2000. | MR | Zbl
,[7] Modelling, stabilization, and control of flow in networks of open channels, in: , , (Eds.), Online Optimization of Large Scale Systems, Springer, Berlin, 2001, pp. 251-270. | MR | Zbl
, , , ,[8] Fluvial Hydraulics, Wiley, Chichester, 1998.
,[9] On hyperbolic partial differential equations, Amer. J. Math. 74 (1952) 834-864. | MR | Zbl
, ,[10] On the modelling and stabilisation of flows in networks of open canals, SIAM J. Control and Optimization (2000), submitted. | MR | Zbl
, ,[11] Global Classical Solutions for Quasilinear Hyperbolic Systems, Masson, Paris, 1994. | MR | Zbl
,[12] Semi-global C1 solution and exact boundary controllabbility for reducible quasilinear hyperbolic systems, Math. Modell. Num. Anal. 34 (2000) 399-408. | EuDML | Numdam | MR | Zbl
, , ,[13] Solution C1 semi-globale et contrôlabilité exacte frontière de systèmes hyperboliques quasi linéaires réductibles, C. R. Acad. Sci. Paris, Série I 330 (2000) 205-210. | MR | Zbl
, , ,[14] Theorie du mouvement non-permanent des eaux avec application aux crues des rivières et à l‘introduction des marees dans leur lit, C. R. Acad. Sci. Paris 73 (1871) 148-154, 237-240. | JFM
,[15] On the control of mechanical systems from one equilibrium location to another, J. Differential Equations 175 (2001) 189-208. | MR | Zbl
,[16] E.J.P.G. Schmidt, On a non-linear wave equation and the control of an elastic string from one equilibrium location to another, J. Math. Anal. Appl., to appear. | MR | Zbl