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ABSTRACT. — We consider the stationary Gierer—-Meinhardt systef®?n

AA—A+%—-0  inRZ
AH —o?H+ A%2=0 inR?
A H>0,A,H—~0 as|x| > +4oo.

We construct multi-bump ground-state solutions for this system for all sufficiently smahe
centers of these bumps are located at the vertices of a regular polygon, while the bumps resemb
after a suitable scaling in the#t-coordinate, the unique radially symmetric solution of

{Aw—w—l—wz:O in R,
O<w(y)—0 as|y| — oc.

A similar construction is made for vertices of two concentric polygons and a general procedure
for detection of organized finite patterns is suggested.
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RESUME. — On considére le systéme stationnaire de Gierer—-Meinhardiifans

AA—A+%2:0 dansR?,
AH —0?H+ A?=0 dansR?,
A,H>0;A,H—0 quandx|— +oo.
On construit des solutions fondamentales multi-pics pour ce systéme, poardoffisamment
petit. Les centres de ces pics sont localisés aux sommets d'un polygone régulier, tandis que |

pics ressemblent, aprés un changement d’échelle approprié dans la coordornBenique
solution radiale de

{Aw—w+w2=0 dansR?,
O<w(y)—0 quandy| — oo.

Une construction similaire est faite pour les sommets de deux polygones concentriques et ur
procédure générale de détection destructures finies organisées est suggérée.
0 2003 Editions scientifiques et médicales Elsevier SAS

1. Introduction

The following reaction—diffusion system was proposed in 1972 by Gierer and
Meinhardt [5] as a model of biological pattern formation:

at:dAa—a+a2/h in Q,

h,=DAh—h+a®> ing, (1.1)
da  Oh

94 _%" _o onag.

v v

The Gierer—Meinhardt system was used in [5] to model head formatidtydfa, an
animal of a few millimeters in length, made up of approximately 100,000 cells of
about fifteen different types. It consists of a “head” region located at one end along
its length. Typical experiments wittnydra involve removing part of the “head” region
and transplanting it to other parts of the body column. Then, a new “head” will form if
the transplanted area is sufficiently far from the (old) head. These observations led to th
assumption of the existence of two chemical substanséswdy diffusing activator and
arapidly diffusing inhibitor, whose concentrations at the poing 2 and timer > 0

are represented, respectively, by the quantities r) andi(x, ¢). Their diffusion rates,
given by the positive constant#sand D are then assumed to be so that iha& D. The
Gierer—Meinhardt system falls within the framework of a theory proposed by Turing [30]
in 1952 as a mathematical model for the development of complex organisms from &
single cell. He speculated that localized peaks in concentration of chemical substance
known as inducers or morphogens, could be responsible for a group of cells developin
differently from the surrounding cells. Turing discovered through linear analysis that a
large difference in relative size of diffusivities for activating and inhibiting substances
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carries instability of the homogeneous, constant steady state, thus leading to the presen
of nontrivial, possibly stable stationary configurations. Activator-inhibitor systems have
been used extensively in the mathematical theory of biological pattern formation, [17,
18]. Among them system (1.1) has been the object of extensive mathematical treatmel
in recent years. We refer the reader to the survey articles [19,34] for a description o
progress made and references.

In particular, it has been a matter of high interest the study of nonconstant positive
steady states, namely solutions of the elliptic system

dAa —a+ad?’/h=0 inQ,

DAh—h+ad*>=0 inQ, (1.2)
0 oh

—a:0:— onos.

v v

Problem (1.2) is quite difficult to solve, in general, since it does not vavational
structure A first step in studying (1.2) is to study ishadow systepan idea due to
Keener [15] and Nishiura [28]. Let us observe that dividing the second equati@n by
letting formally D — oo, and making use of the boundary conditions we obtain that
h = & = constant and the system becomes equivalent to

dAa —a+ad?/E=0 inQ,
1
g=_/a2, 1.3
21/ (1.3)

. d
a>0 InQ, —a:0 onoag2.
av

(This is the so-calleghadow systerassociated to (1.2).) Setting(y) = £ ta(d'/?y)
transforms the system to the scalar equation

Aw—w+w?>=0 inQy,

. 0
w>0 InQy,, a—w=0 onoag,.
V

Here Q, denotes the expanding domait/2Q. Conversely, a solution of this
equation determines one of the system. The study of nonconstant solutions of this an
related equations as approaches zero has been an object of extensive study in recen
years. Since the domain is expandingdas> O, it is natural to search for solutions
which resemble, after a convenient translation of the origin, a solution of the limiting
problem

Aw—w+w?>=0 inR",
(1.4)
O<w(y)—0 as|y| —» oc.

It is well known that this problem has a solution for< 5. This solution is unique
up to translations, and radially symmetric. Solutions of this type, when regarded in
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the original coordinates, exhibfioint concentration in the activatora (spike shape)
around one or several distinguished points of the closure of the dofhaisd — 0.

A number of interesting results concerning this scalar problem have been derived i
recent years. For the subcritical case, we refer the reader to the articles [8,10-12,1
23,31], and the references therein, starting with the pioneering works [16,20-22]. Fo
the critical exponent case, we refer to the papers [6,7,9,24], and the references therei
A good review of the subject is to be found in [19].

In the case of finiteD and bounded domain case, the construction of multiple
peak solutions began with the work of I. Takagi [29]. There he constructed multiple
symmetric peaks in the one-dimensional case. In high-dimensional case, Ni an
Takagi [23] constructed multiple boundary spikes in the case of axially symmetric
domains, assuming that is large. Multiple interior spikes for finit® case in a bounded
two-dimensional domain are constructed in [35,36] and [37]. The stability of multiple
spikes as well as the dynamics of spikes are considered in [1,2,4,13,25-27,33,36,37] at
references therein.

It is of course natural to ask whether these solutions, single or multiple spikes, will
actually correspond to limiting configurations solutions of the full system when
becomes finite and very small. In fact, though tiny, variations of the inhibitor may
lead to localized organized patterns which are lost in the limit. This has been recently
established for the ground-state problem in the real line in [3]. (Similar results have
been obtained independently in [4].) The presence of such steady configurations appes
driven by smallness of thelative sizes? = d/ D of the diffusion rates of the activating
and inhibiting substances. In the shadow system, geometry of the domain is to be hel
responsible for the presence of multi-peak patterns (see for example [12]). Let us mak
in (1.2) the scaling

u(x) =0 ta(d"?x), v(x) = o " th(dY?x).

Then similarly as one gets formally the ground state problem (1.4) from the shadow
system (1.3) we obtain, lettingg— 0 in (1.2) witho stabilized and: = 2, thelimiting
system

Au—u+u?/v=0 inR?
Av—c?v+u’=0 inR? (1.5)
u,v>0, wu,v—0 as|x|— +oo.

This setting is rather natural, since it may correspond to a very large domain with
the pattern formation process taking place only very far away from the boundary. Or
the other hand solutions to this problem would play the role of “basic cells” after
scaling, for solutions of the system in a bounded domain. As we will see, a notable
feature of this ground-state problem in the plane is the presence of solutions witt
any prescribed number of bumps in the activator as the pararaeggts smaller.

These bumps are separated from each other at a distaimy@go|) and approach

a single universal profile given by the unique radial solution of (1.4). These solutions
are lost in the limiting shadow-system, since, up to translations, only one ground stat
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of Eq. (1.4) exists. This unveils a new side of the rich and complex structure of the
solution set of the Gierer—Meinhardt system in the plane and gives rise to a numbe
of questions. The multi-bump solutions we predict in the results to follow correspond,
respectively, to bumps arranged at the verticesiefegular polygon and at those of two
concentric regular polygons. These arrangements with one extra bump at the origin at
also considered.

In the sequel by/ (x) we denote the unique radially symmetric solution of

AU —-U+U?=0 inR?
(1.6)
O<Ux)—0 as|x| —» oo.

Let us set
k 1 -1
z, = (—Iog—/Uz(y)dy> . (1.7)
2 o A
R

Ouir first result is the following:

THEOREM 1.1. — Letk > 1 be a fixed positive integer. There exigis> 0 such that,
for eachO < o < oy, problem(1.5) admits a solutior(u, v) with the following property

lim. —0, (1.8)

k
Touo(-x) - Z U(x - 51)
i=1

uniformly inx e R?. Here the pointg; correspond to the vertices of a regular polygon
centered at the origin, with sides of equal lengitsatisfying

1 1
I, =loglog— + O(Iog log Iog—). (2.9)
o o
Finally, for eachl < j < k we have
liLnO!ravg(éj +y)—1/=0,

uniformly on compacts im.

Our second result gives existence of a solution with bumps at vertices of two
concentric polygons.

THEOREM 1.2. —Letk > 1 be a fixed positive integer. There exiss> 0 such that,
for eachO < o < oy, problem(1.5)admits a solutionu, v) with the following property

k
lim |71 (x) = 3 _[UGx —&) + U (x —§)]| =0, (1.10)

i=1
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uniformly inx € R?. Here the pointg; and&* are the vertices of two concentric regular
polygons. They satisfy

2jm . 27j -

£ =pseF’, S;-k:,o;keT’, j=1 ...k,

where
1
ps = ——loglog — +O<Iog loglog— )
|1—e*|
and
1
Py = (1+ 7> loglog— +O(Iog loglog— )
|1—e®|

A similar assertion tq1.9) holds forv,, around each of thé; and the&;*’s.

THEOREM 1.3. — Letk > 1 be given. Then there exists solutions which are exactly as
those in Theorems.1and 1.2 but with an additional bump at the origin. More precisely,
with U (x) added tozf.‘zl Uk —§)in(1.8)and added thf-‘:l[U(x —&)+UMKx—-§9]
in (1.10)

The method employed in the proof of the above results consists of a Lyapunov-
Schmidt type reduction. Fixing: points which satisfy the constraints

2 1 1
5loglog— < |§; — & <bloglog—,
3 o o

for all i # j and with someb > 1 to be determined later, an auxiliary problem is
solved uniquely, and solutions satisfying the required conditions will be precisely those
satisfying a nonlinear system of equations of the form

Cia('§1752’--~7'§m)=05 i=1a---amaa=1525

where for such a class of points the functiefssatisfy

Cia(sla---a k 8.§ |:ZF |'§] :|+8laa (111)
iz

function F : R, — R is of the form

c7logr

Fiy= log1/o

+ cgU (1),
¢7 andcg are universal constants and

1
= Tog gy )

for somey > 0. Although (1.11) does not have a variational structure, solutions of the
problemc;, = 0 are close to critical points of the functionl, .; £ (|&; —&;1). In spite of
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the simple form of this functional, its critical points are highly degenerate because of the
invariance under rotations and translations of the problem. Thus, to get solutions usin
degree theoretical arguments, we need to restrict ourselves to classes of points enjoyi
symmetry constraints. This is how Theorems 1.1-1.3 are established. On the other han
we believe strongly that finer analysis may yield existence of more complex patterns
This, as well as the stability of these patterns, are among issues we intend to study i
the future. In this regard, we can mention that the construction of such arrangements c
multi-bumps can be obtained in patterns such as a symmetric six-arm snowflake and
bounded (hexagonal) honeycomb.

The rest of the paper will be devoted to the proofs of these results. In Section 2 we se
up the scheme of proof, in particular we explain why the constam the right scaling
factor to get the desired multi-bump expansion. The program there outlined is carriec
over the following sections.

2. The scheme of the proof

Our strategy of the proof of the main results is based on the idea of solving the secon
equation in (1.5) fov and then working with a nonlocal elliptic PDE rather than directly
with the system. It is however convenient to do this by replacingditst r, u andv by
7, v, Which transforms (1.5) into the problem

Au—u+u?/v=0 in R?,

Av—c?v+1,u’=0 inR? (2.1)

u,v>0, wu,v—>0 as|x| > +oo.

With the choice of the parameter as in (1.7),

-1

k 1
7 = <E og— [ U%y)dy) , 2.2)
RZ

we obtain

k
uwZU(x—Si), v~1,

i=1
i.e., the height of the bumps near thés remains bounded as — 0. We should point
out here that the situation is similar in dimensivn= 1, see [3], with the scaling factor
1, of ordero—1. On the other hand, in dimensia¥i > 3, it is not at all clear what the
right scaling factor should be. This difference is due to the behavior of the fundamenta
solution of —A + o2,
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In the sequel, by () we denote the unique solution of the equation

—Av+oc2v=1h INnR?
(2.3)
v(x)—>0 as|x| — +o0,

for h € L?(R?), namelyT = 1, (—A + 0?)~1. Solving the second equation foin (2.1)
we getv = T (1?), which leads to the nonlocal PDE far
M2

T(w?) 0

—Au+u— (2.4)

We consider pointsy, &, ..., & in R? which are the candidates for the location of
spikes. We will assume that for sorhe- 1,

2 1 1 ..
—loglog— < |§; — &| <bloglog— Vi #j. (2.5)
3 o o
Let us write
k
W) =) Ux—§&).
i=1

We look for a solution to (2.4) in the formm= W + ¢, where¢ is a lower order term.
Then, formally, we have

T (u?) =T (W?) 4+ 2T (W¢) +l.o.t.

where |.0.t. correspond to lower order terms. We deriote T(W?). By K(|y|) we
denote the fundamental solutiontoA + 1 in the plane. We can write

k
T(Wz) =1, / Wz(y)K(o|x —yl)dy ~1, Z/Uz(x —&)K (o|x —y|)dx
i=1
where the integration extends over &f. For x| = o(c~1) we haveK(o|x|) =
—% log(o|x|) + O(1). Using this, and the definition af, we get that near thg’s,
Vix)=1+l.0.t.

Arguing similarly we get

1
k[U?

- 1
T(W¢)=w/W¢>dx+|.o.t., W= T—Iog— =
2 o

Then

2 W242We +lot. W2
w_Wirewe + :—+2W¢>—W2w/W¢>+I.o.t.
v VIT(We)+lot  V
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Substituting all this in (2.4) we obtain the equation for
—A¢+(1—2W)¢+2wW2/W¢:S+N(¢>), (2.6)

whereS = AW — W + W72 andN (¢), defined by

W+p? W2 2
N(¢) Wi Vv 2Wo +2W w/qu)],
represents higher order termsgn

Thus we have reduced the problem of finding solutions to (2.1) to the problem of
solving (2.6) for¢. We set% = Zj,. Rather than solving directly problem (2.6), we
consider first the following auxiliary problem: given poirits find a function¢ such
that for certain constants, the following equation is satisfied:

Lp=8+N(@)+> cjaZja: (2.7)
j.a
(#,Zja) =0, j=1,...k, (2.8)
where
L¢:—A¢+(l—2W)¢+2wW2/W¢ (2.9)

and(-, -) denotes the.? inner product.

We will prove in Section 4 that this problem is uniquely solvable within a class of
small functions¢ for all points (&4, ..., &) satisfying constraints (2.5). Besides, the
resulting constants;, (&1, .. ., &,) admit the expansion (1.11). We will of course get a
solution of the full problem whenever the poigtsare adjusted in such a way that all of
cie'S vanish. We show the existence of such points in Section 5, where Theorems 1.1-1.
are finally established. In remainder of the paper we rigorously carry out the program
outlined above. In particular, we will need to understand invertibility properties of the
linear operatod. first. We will do this in the next section.

3. The linear operator

PropPoOSITION 3.1. — Let U be the unique, positive, radially symmetric solution to
(1.6).
(a) There exists a positive constamg such that, as- — oo, the following formula
holds

U(r) = por Y% 1+ O(r_l)] .

MoreoverU'(r) < 0,r > 0andU’(r) = —U (r)[1+O(r~1)], asr — oo; a similar
formula holds forU” (r).
(b) LetLo=—A + (1— 2U)id. Then we have

U oU
Ker(Lg) = spar{ — }

a)Cl’ a—)Cg
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(c) LetL be the operator defined i{2.9)and let
L' = —Ap + (1— 2W)d + 20W / W2

be its formal adjoint. If we denote

L, _aw
jou — aé‘_ja’

then,forallj =1,...,k, a =1, 2, we have

1 .
LZ;, = 0<exr)(—§ min & — Sm|>),
L"Zj, = O(eXp(—é ggggléz — é,n|)>.

Similar estimates hold for Sobolev norms/df ;, and L*Z .

We shall carry out the analysis of the linear operdtan a framework of weighted.*
spaces. For this purpose we consider the following norms for a function definé on
given pointstq, .. ., & we define

11l = supe? MMk =il (), (3.1)
xeR2
where O< 1 < 1/8 is a fixed number. We also consider
/2 ]lce = SUpE3 MMk E Ly (). (3.2)

xeR2

This choice of norms will become clear later. In the sequel we will not emphasize the
dependence of the norms of a particular valug ofVe first consider a problem that will
later give rise to the finite-dimensional reduction. Given a funckipfz||.. < oo find a

¢ and constants;,, j=1,...,k, « =1,2, such that one has

Lo=h+> cjuZjy INR?
j.a
¢(x)—>0 as|x| — oo, (3-3)

($,Zja)=0 forj=1,...,k,a=12
By ¢ we will denote a vector with components, .

We refer to a paiK¢, ¢) as a solution to (3.3). We have the following existence result
for (3.3).
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THEOREM 3.1. — There exist positive humbe® and C such that, for any points
&1, ..., & satisfying|& — &;| > R for all i # j, and & locally Holder continuous with
Il < oo, problem(3.3) has a unique solutiop = 7 (k) andc = c(h). Moreover,

[T W], < CllA.. (3.4)

The main ingredient in the proof of this result is the following lemma.
LEMMA 3.1. —Assume thagj’.’, Jj=1...,k, are such thamin;; |§' — gj’.’| — 00,
7]l — O, and thatg, solves
Ld)n :hn —JrZC;!aZja in RZ’
j.o
¢n(x) >0 as|x| — oo,

(bn, Zjo)=0 forj=1,... .k, a=12

Then| ¢, |l — 0.

Proof. —We will argue by contradiction. Without loss of generality we can assume
that ||¢, . = 1. Our first observation is that;, — 0. Indeed, multiplying the equation
by Z;, and integrating by parts we get

<¢naL*Zja>:C’;a/Zj2'a+ Z C:;ﬁ(zmﬂazjot)‘i'(hnazja)-
(m,B)#(j,e)

Using Proposition 3.1, by rather standard calculations, it followsdtfat> 0 asn — co.
Our next goal is to prove that

/W¢n—>0 asn — oo.

To this end consider test function
Z=x-VW+2W

and let
Lo=—A+ (1—20)id.
We first claim that
LoZ = —-2W 4+ 0o(1).
Indeed if we setz; (x) = A°W (Ax), then
A (x) = 2w, — uf + > UGx — E)U (hx — &),
i#j

SinceZ = %L;h:l the claim follows now from Proposition 3.1 and the above.



64 M. DEL PINO ET AL./Ann. . H. Poincaré — AN 20 (2003) 53-85

Decompose, = a, W + v, where(W, ¥,,) = 0. ThenLy, = Loy,, and we have

0(1) = (L, Z) = ay (LW, Z) + (Lo, Z).

But
(LoYu, Z) = (Yu, LoZ) = —2(W, ¥,,) + 0(1) = 0(1)

and

w2 _1 ows 3 _4 [ ws
(LW,Z)_<W,Z>+0(1)_3/x vW +2/W +0(1)_3/W +o(1).

It follows thata, — 0, or (W, ¢,,) = 0(1). Going back to the equation satisfied §y,

we see then that

=g+ (L= 2W)dy =0 (W2 Y Zyu )+ hy = g+

Jjro

with || g, |l.« — 0. We can rewrite this relation as
B0 = [ K(1x =) @Wy + g+ h)dy =141 410,

wherek is the fundamental solution 6fA + 1 in R?.
Using the definition of the norr- ||, and normalization|¢, ||, = 1 we get

I<2/K(|x — Y)W )|¢u ()] dy
<2 / K (Jx = Y)W (y)e2mussb=l dy
< Ce —(14-2p) min; < =&l

Furthermore we have

I < 0(1>/K(Ix =) {Wz(w + |Zja|} dy < o(1)e =M<k il

J.o
Finally we get
I < Cllhn||**/[((|x _ y|)e—3umin/<k =4 4y
<o) / K (]x — y|)e ~3#min<iy=5il gy
< 0(1)e ~3Hminj<k v =51,
Combining the above inequalities we obtain

|¢’n (x)| < vge 3 minj<k K =§j1

(3.5)
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with somevg > 1 independent on. Consequently,
e 2HMin;< IX—$j||¢(x)’ < vge H min;<x lx=§;1
Since||¢, |« = 1, the above inequality implies that at least for one ingdewe have

sup  |gn(x)| > vy
{ix—gl<00

"

We set¢~>n(y) =¢n(y +én). A standard compactness argument then yields the existence
of a subsequence ¢f, which converges uniformly over compacts to a nontrivial solution
¢ of the equation

—A¢p+(1-2U)¢p =0,

which decays exponentially to zero at infinity. Moreovet,, Z;,) = 0, estimate (3.5)
and Dominated Convergence Theorem yield

9
<¢,—U>:o, 0=12
A

hence, from Proposition 3.1, we obtapn= 0. We have reached a contradiction which
concludes the proof of the lemman

Proof of Theorem 3.1. ket us set
H={pecHR")|($,Z,,)=0, j=1,....k, a=12}.

Observe thap solves problem (3.3) if and only i € H satisfies

[ TV 9w — @Wo. ) + 2000, 9 W2 Y = (h Y)Yy N,
This equation that can be rewrittenin the form

o+ S(p)=h, (3.6)

wheres is a linear compact operator # andh € H.

Using Fredholm’s alternative to show that this equation is uniguely solvable it suffices
to check that Eq. (3.6) foh = 0 has only the zero solution. To this end, we can just
assume the opposite, namely the existence of pgjhssich thaé" — &7 — oo, so that
¢, solves

L) =) yZja INR
j.o
¢, (x) >0 as|x| — oo,
(. Zjy)=0 j=1....k,a=12,
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and ||¢,|l. = 1. But this contradicts the previous lemma. Once we krpwwe can
determine a unigue from the system of equations

Cja/ij'a+ Z Cmﬂ<Zmﬂijot>:<¢v L*Zja>_ (hv Zja>~
(m,B)#(j, @)

Estimate (3.4) follows now immediately from Lemma 3.10

4. Basic estimates

In this section and those to follow, we make the following assumptions on the points
El, ey %-k:
2 1 .,
§|09|09;<|&—-§j| Vi # j, (4.1)

and for a certain numbeér> 1
b 1
& < =zloglog— Vi. 4.2)
2 o

The estimates obtained below will be uniform on poifitsatisfying these constraints,
and valid for all sufficiently smalk > 0. Observe that from (4.2) it follows

1
|& —&;| <blog Iog;, i # ]

We also notice that from our argument in the following sections one can show that it
suffices to takeé > 20.
For the rest of this section as well as in the remainder of this paper the same symbc
y will designate different positive numbers taken in each step smaller if necessary.
Our immediate purpose is to work out estimates for the solutiaf the problem

2

U(lx _§i|)‘| ,

k
—AV 4+0%V=1, [
i=1

V(ix)— 0 as|x| > oo,
wherert, is given in (2.2) Denote by, the solution of
—AZo+02Zo=U(x)%,
Zo(x) > 0 as|x| — oo,

and by®;; (x), i # j, that of

A0+ 020 =U(lx — &)U (x — &), (4.3)

f(x) >0 as|x| — oo.
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Then we have

k
V) =1, Zo(lx — &) + 7o Y _ 6 (x).
i=1 i#j

We will now studyZy(|x]). Let K(|x|) be the fundamental solution of
—AK + K = 4,

wheredy is the Dirac mass at the origin.

LEMMA 4.1. —The following expansion df holds
1 2
K@) = o logr + ¢1 + corclogr + ¥ (r),

for 0 < r < 1, wherey is a smooth function, witl) (0) =0, ¥’'(0) =0 andcy, ¢, are
universal constants.

Proof. —Leth(r) = K(r) + % logr. Thenh satisfies

—Ah+h= % logr,
h(l)=K(Q).

Consequentlyk is a radially symmetric function which is of clagg in B(0, 1). More
precisely, it can be written in the form:

h(r)=c1+ czrzlogr + Y (r),

with ¢ as in the statement of the lemma, and the desired expansion follaws.

Our next purpose is to estima#(x) in the rangelx| < 10blog Iog%. Our starting
point is thatZ, can be represented in the following form:

Zo(lx]) =/K(a|x—y|)U2(|y|)dy.

We can expand, as

Zo(|x1) :—%/Iog(olx—yl)Uz(IyI)dy+c1/U2+O(02I0go),

whenever|x| < 10blog Ioggl. The quantity @o?logo), as well as its derivative, is
small, uniformly inx in this range.
Let us consider now the quantity

1

H (Jx]) =—Z/Iog|x—y|U2(|y|>dy. (4.4)
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H (r) can be written explicitly, for > 1, as

r

d N
H(r) =c4—/7s/U2(p>pdp,
0

1

for a certain constanty. Hence, forjx| > 1,

H (1+l) =~ (log+l) [ U+ £ (1)
where f and its derivative are uniformly bounded.

Let us now consider the functioms; (x) given in (4.3). Since;; can be represented
as

00 = [ K(olx =) UG =6)U (=) dy.
Then, for|x| < 10blog Iog%, the following uniform expansion holds
1
0 0) =5 [log(olx = ¥)UGy = €0V — &) dy
+a [UG-8U0-&)dy+00).

Using Proposition 3.1 one can show that there js:20 such that

1 1
[ (o= groame =)o -6 —g1ar=0(gegr5 )

uniformly on|x| < 10blog Iog%; a similar estimate holds for the derivative of the above
expression with respect ta Let us set

s.(12) = [ VUG -2 dy. (4.5)
We have thatU (y)| < Ce™"!, hence, foro = |z 7%, 2 = pz,
5*(|Z|) < Ce—(l—p)lzl/e—p(|x|+|x—z|)dx < C€_|Z||Z|2/e_(|y|+|y_2|)dy_

This implies
8.(lzl) < Ce Fljz 2. (4.6)
A similar estimate is valid for the derivative 6f. Hence

8. (1& — &j|) < Ce M 5illg, — ;12

Thus, combining the above estimates we obtain:
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LEMMA 4.2, —
(a) The following estimate holds uniformly fpr| < 10blog logo

k
V) =1+71, ) H(lx—&l)+cs Y 8.(1& —&l) +O(

i=1 i#]

Iogll/a )

A similar estimate holds for the derivatives Wfwith respect tac. The function
H (]x]) is given by(4.4)and, for|x| > 1, has the expansion,

H(lx]) = —(log|x]) / U2+ f(x))

with a smooth, bounded. The functioné, is given by(4.5) and satisfies
estimateg(4.6).
(b) If |x| > 10bloglogo then the following lower estimate is true

€6 _20x|
> ) .
Vx)> g 1o 4.7)

Estimate (4.7) can be proven by using a suitable barrier function. We omit the details.

5. Further estimates
For brevity we shall denot&;(x) = U(Jx — &) and W = Zf.‘zl U;. Our purpose in
this section is to derive estimates for the quantity
2

w

which can be rewritten as

Our first result is the following:

LEMMA 5.1. —Let the numbep > 0 in the definition of the norni - ||, be such that
u < 1/6. For all pointsé; satisfying constraint$4.1), (4.2), and all sufficiently smaly
we have

< 9
||S”** (|Jg]/7)l/2+y

Proof. —Let us assume firgk| < 10blog Iog%. We write

1-v &
S==—NU+v M yU, =1L+ L. 5.2
% ; i ; Jj 1 2 ( )
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To begin with, observe that, in the region under consideration,

1
=1+ Gog)

for any$ > 0. Hence

k
1
-(527)olwore)
b (;}“) (09 /o)
On the other hand,

V_lU,- Uj < 2U; Uj < Ce_3li(|x_5i|+|x_§/'|)/2e_(l_3li/2)|§[_é§j|‘

Hence
1

(log 1/)3(-34/2
in this region. Choosing. < 1/6, we then get

I, < Ce™ 3" min; |x—&;|

1

IS| < Ce_?’”mini [x—&;| —,
(log /o) 5+

O<y<1/6—pu, (5.3)

for all smallo, provided thafx| < 10blog Iog%.

Assume nowx| > 10blog Iog%. Then, recalling estimate (4.7), we get, assuming also
thatb > 1,

1 k 1 k % . L
S| <Clog— U2 |e’ < Clog= U2| o—3loglogt
|S] g o ( ; ; )e g . ; ; e
Nt
<<C|og—> e M bl (5.4)
o
Combining relations (5.3) and (5.4), the assertion of the lemma immediately fol-

lows. O

Another quantity whose estimates will be crucial for the remaining arguments is

T= /SZ,-O,. (5.5)

We shall considei = 1 = « only, since the other cases are similar. Observe that

W=t — _WL=8) and thus we have
9611 dx1

kU
T - -1 277 (x —
I_/(l V)V ;U, ax1(x &) dx

U
+ / VI UU— —&)dx =1+ I.
i%] dxy
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We will estimate separatelis and /. In fact we will find the following expansions:

0 1
12:_67E;U(§j £1)+0O <W> (5.6)
and
_ 0 log |&; — & 1
h=—cage 2 ogo O((Iog /o) ) -7

i#1
Herec; andcg are absolute constants apdsome positive number.
We will establish first (5.6). Using Lemma 4.2 we obtain

v 12”” —/ZUUfa . ((Iogl/law)'

i#] i#]

Let us estimatg Uin% fori # j. We observe that if, j # 1, then

3U1 —l&i—&1l—-15i =511\ — ( 1 )
/ Uiliom Ole )=0 (log1/0)43)"

On the other hand, if=1, j # 1 we get

oy 19 _ _
/UlUja—xl__Zéll/U (x—=&)U(x —§&;)dx.

To analyze this last quantity, we will use the following intermediate result.

LEMMA 5.2.—Let h(|x|) be a nonnegative, radially symmetric function such that
h(|x]) < Ce " for somel < o < 2 and let

F) :/h(|x|)U(x —2)dx.
There is a numbers > 0 such that

F(z) =csU(2) + ¥ (2),

whereyr (z), as well as its derivative, satisfy(z) = O(e™*") asr — +o0.
Proof. —Let us observe thak is radially symmetric and satisfies

—AFR)+F@)= /h(|x|)U(x —2)%dx = ho(z).

Thushy is radially symmetric, antho(z)| < Ce~*"%l. Using the ODE satisfied by we
see that it can be represented, thanks to the variation of parameters formula, as

o0 d o0
F(r)=XoK(r) —K(I’)/ﬁ/ho(t)l((t)tdt,
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where

o0 ds o0
Aozo/w/ho(t)K(t)tdt > 0.

Similarly, sinceU satisfies

—~AU@R)+U(z)=U(z)?

we get, with
Al—/sK(s)2/U K ((t)rdt >0,
that
U(r) =K (r) —K(r)/sK(ss)z /Uz(t)K(t)tdt.

Then, choosings = i—‘l’ the result of the lemma follows with

o]

T d
w(l”)=K(I’)/ﬁ/[//lo(1‘)—C5U2(t)]K(t)tdl‘.

This concludes the proof.0

Using Lemma 5.2, we thus get that for a certain universal consant,

/ U?(x — £)U (x — &) dx = 2c7U (§; — £1) + O(e 25741l

with a similar estimate for its derivative. Hence
1
viNTUU; =—c7—> U o[ ——— ),
/vy 3 =% ,Z# &=+ gi7ey)

and estimate (5.6) thus follows.
Let us continue now withi;. Using Lemma 4.2 we get

/ZU(x—a { S H(lx — &) + = Za & — sz|>}
Jaél
aU 1
. a_xl(x Cedet O((Iog 1/0)1+V>
whereH is given by (4.4) and, by (4.5). Let us first estimate

oU
g1 = / U= £%8.(18 &) 5 - — € d
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with j £ 1. Fori = 1 this term is zero, while fof # 1 we can estimate, using (4.6) and
Lemma5.2,

1
< IE — 2—|s,~—sz|—|s,-—sl|=o< )
sl < & — &% Toq o

Let us consider now the terms
oUu
I =/U(x )7 H(1x — )5 (s~ b d.

First we observe that the term corresponding te j = 1 vanishes, by symmetry. If
and j are both different, and both different from 1, then the resulting term is of lower
order, more precisely

d
L= / U= 6)%H (1x = §1) 5 —U(x — &) d

_ [y L5 — ) (e 1
= [vrg [ U= - s) tonlx — & — 0 U dx +O( ot )

0 1 1
=C g 08l ~ 01U &~ 60+ (oo ) = O( gy )
On the other hand, f=1,

11j=—§E/U<x>3 (|x = (& — £0)]) dx

/e 2 Slog(|x — (& — ;>
Ve [ vereatls & - ) ar+ o g

_nglogUg] §1|)dx+o<
Now, as forl;;, we get

1
(log l/o)V) '

o 2 i — O(o— 81l — <;>
1,1_/U(x (& —&0)H (1)) 50 dx = 078 = 0 o).

Combining the above estimates immediately yields (5.7).
Hence we have found that

log|§; — &l 1
/Sle ~ a%_ll |:C7U(§] Sl) + C8T:| + O(W) .

Thus, we obtain the following result:

LEMMA 5.3. —There exists ay > 0 such that for all points§; satisfying (4.1)
and(4.2) we have,

5 D708 =) 1
f520= _m;@ T O((log 1/o>1+y> ’
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where
Fr) = ce—3" 4+ ;U (r)
r)==~«Csg |Og 1/0_ c7 r

andc;, cg are universal constants.

6. The finite-dimensional reduction

We will carry out the finite-dimensional reduction process sketched in the first part
of the paper. As in the previous section, we shall assume that the gosuatisfy (4.1)
and (4.2). Recall from Section 2 that the original problem was recast in the form

2

—A = —F.
Uu—+u T2

(6.1)

Rather than solving this directly we consider instead the problem of findlisgch that
for certain constants;, one has

2

—AA+ A=
* T (A?)

+Zciazia (62)

and(A — W, Z;,) =0 for all i, «. Rewriting A = W + ¢ we get that this problem is
equivalent to

—Ap+¢—2W¢ +2W2w/W¢

=AW—W+W72%— W72—2W¢+2W2w/W¢+ZcmZm
=S+ N@) + Y CiaZia (6.3)
and
(¢, Zi) =0 foralli,a. (6.4)

Using the operatof/ introduced in Proposition 3.1, we see that the problem is then
equivalent to finding @& € H so that

¢=T(S+N(@)=0().

We will show that this fixed point problem has a unique solution in a region of the form

B={senisl. < (6.5)

(log 1/o)t/2tr }

for somey > 0, provided that is sufficiently small.
We recall that from Lemma 4.1,

< - -
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for somey > 0. On the other handy (¢) admits the estimate provided by the following
lemma.

LEMMA 6.1. —Assume thal¢|. < W for somey > 0. Then

IN@)..<C

1
(log 1o )21-20)/3 + 1ol |l

provided thatu in the definition of«- and xx-norm andb in (4.1), (4.2) are such that
<3 and% < b, ando is taken sufficiently small.

Proof. —Let us assume firgk| > 10bloglogo, wherep is as in the definitions of the
x- and=x-norms. We observe that using a suitable barrier one can show that in this rang
of x we have

€ oi
T(W+9)) > “loglo’

Let minj <k|x —&;| =[x —&]. Then

3M|X =&l

N(9)|
=&l 2WQV + ¢* = 2W?T(W¢) — WT (¢°)
VT (W +)?)

1 el 2
<C Iog;e3"'x Sile20 K (Wg| + ¢% + W2 o |l + WlIo|12)

—2W¢ + 20W? / W¢}

1
<cnog;e@wﬂ”“*”k**fWW|+|¢u+wmn©-k¢ﬂ
1
< Clog =e 314208l (g, + [16]1?)
o

1 2
< W(||¢||*+||¢||*)- (6.6)

Provided thatl < b ando is taken sufficiently small.
Let us con5|der now the cagel < 10bloglogo . We decompos@/ (¢) in the form

N(¢) = N1(9) + N2(¢),

where

1 2T(Wo)
T(WigD V. v

2T (W
M@ﬁ4W+mﬂ (¢q

}[@W )¢

and

T(W¢)} n ¢°

— 1 2
Na(p) = —2¢W<1— V) +2W [a)/WqS - >
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We have thatT (W + ¢)?) = V + 2T (W¢) + T (¢?). On the other handy (x) =
1+ O(W) in this range, for ang > 0. Also,

1
e =o [ We+ O(W> 161,

and in particular|T (W¢)| = O(||¢|l,). Likewise, andT (¢?) = O(||¢[|?). Combining
these facts we obtain

IN1(@)| < (W2 + 92T (%) + C[(2We + ¢°) | T (W)|]
< Ce—‘wmin;gk [x—&;| ||¢||§

A similar analysis yields

[N2()| < (161W + W2loll.) + Clo|?

(log 1/0)*=*

< Ce~4mminig lx—§il <||¢||i + (log 1/o)21 20073 ||¢||*>’

hence

3 min; < |x—&;| 2
cesnmnasi || < (112 + o5 l/6)2(1_2”)/3||¢||*)
for |x| < 10blog Ioggl. Combining this estimate with (6.6), yields the result of the
lemma. O

Using the definition of the corresponding norms, splitting different rangasasf in
the above proof, it is readily checked that the following holds: If

lIill. < i=12,

1
(log 1/0) /2y

then, givere > 0, for all o sufficiently small one has that

[N (@) — N@2)|,, <ellgr — @2l

Proposition 3.1 implies that the operai@ris a contraction mapping in the s8tdefined

in (6.5). On the other hand, taking= % — i, we also get from the above lemma that
0O mapsh into itself. Banach fixed point theorem, then yields the existence of a unique
fixed point of Q in this region, which depends continuously in #i@orm on the points

&. We summarize this result in the following proposition:

PrRoOPOSITION 6.1. —There is a numbey > 0 such that for all sufficiently smatt
and all pointsg; satisfying(4.1), (4.2)we have the existence of a unique solutio(6t8),
(6.4), ¢ = ¢(&1,....&) and ¢ = c(éy, ..., &) which satisfies|¢; || < (log2)~Y/27.
Besides(¢, ¢) depend continuously on tiggs.

In addition the following formula holds for the componeajs of c:

Cja=bjg+¢ja, j=L....k,a=12, (6.7)
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with

’

AF(I§; — &nl)
biy = Z - M5y SmUJ
! m#j agja

the error termse ;, which satisfy

1
Fja = O((Iog o)t )

and
logr
logo
Proof. ~We only need to prove the formula foy,’s. Let us observe that the, satisfy
the relations

F@r)=cU(r) +cs

D calZias Zjg) = —(S. Zjp) — (N(), Zjg) + (p, L*(Zjp)),

i,

which define an “almost diagonal” system, from which #g's can be solved for
uniquely. The main term in the above expansion is giveqyZ ;z). To obtain estimates
for these numbers, which will equal tkgs’s at leading order, we observe that

1 1
LY (Zjp))| <O ——— )lIgll. =O( —————=— ).
(6. L Zi) <(Iogl/a)§>”¢” <(|091/0)1+V>

Formula (6.7) is now an immediate corollary of Lemma 5.3, Lemma 6.1, and the
expressions found for thg,’s. O

In the following section we will find that points that make alk;,’s vanish indeed
exist, satisfying the conditions in Theorems 1.1-1.3.

7. The reduced problem

7.1. Invariance of ¢ under permutations of§

In the remainder of this paper we will denofe= (¢4, ...,&), andc = c(é) =
(c1,...,cr), Wwhere§; = &1 +i&j, cj =cj1 +icjp andi is the imaginary unit.

In this section we will study the effect of permutating the component§ o
the values of functiorc. We think of the components @f as complex numbers and
consider only such permutations which actgis. As before we assume thigts satisfy
conditions (4.1), (4.2).

LEMMA 7.1.—LetII be a permutation of the components of a veéter (¢4, ..., &)
€ R%. The following statements hold

() Lé)=L(Ié).

(i) S&)=S5(18).
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(iii) N(W(.f) Y) = N(W(l‘ls) ¥, for any functiony € H*.

(iv) c(I1§) =TIc(é) and¢(I1€) = ¢ (£). .

(v) Suppose thall; is a permutation which leaves th¢h coordinate ot invariant.
Thenc; (I1;&) = c; (&) = (I1;¢(8)),.

Proof. —

() Observe thatW(§) = W(I1€) and W2(§) = W(TI£). It follows that for any
functiony

LEWY =—Ay + [1— W]y +20W2E) / W)y = L)y

Observing thay (§) = V(I1€) and using explicit formulas faf and N we easily prove
(i) and (iii). We omit the detalils.
(iv) For eacht there is a unique solutiot@ ), cé)) to

LEGE =RWE)+NWE),¢) +>_cja)Zjo®)

Jja

(9€). Zju(6)) =
Let ¢(€) = ¢(I1€). Then, by (i)—(iii) (¢ (§), c(T1€)) satisfies

LEPE) =R(WE) +N(WE), ¢) + > cjo (1) Z;o (TIE)

J.a

($(6), Z;o(11£)) = 0.

Since vectorsZ(£) and Z(I€) differ only by the permutationlT of their
components therefore by uniqueness we obtain dt&t and c(l‘Is) also differ
only by the same permutatiofi of their components, nameBic(§) = c(I1§).
This completes the proof of (iv).
The last statement is an easy consequence of (iv). The proof of the lemma i
complete. O

7.2. Reducing number of equations for concentric polygons

We recall that speaking of componentscaffe mean the complex numbers
We begin with a corollary which shows that if we impose certain symmetries on the
set of spikes then the number of equations can be reduced.

COROLLARY 7.1.—

(i) Letv € (0, 27) be given and suppose thitis such tha€ seen as a subset 6f
is invariant under the rotation by (we will denote the resulting vector by’ £).
Then, knowingc — 1 components o(¢) suffices to determine atl components

of c(§).
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(i) Let & be given and Ietg denote a vector whose components are complex

conjugates of. Assume that there is a permutatioh such thatllé = £ and
that for somej we havet; =&;. Thenc;(§) = c;(£). A similar statement holds if

Mé=i

Proof. —

(i) Observe that |f§ satisfies the assumptions of the corollary then rotation of the
components of by anglev is also a permutation af. By Lemma 7.1 we then
havee'” c(£) = c(e'” £) and (i) follows.

(i) By the assumptiorTl is a permutation of which leavest; invariant. Using (v)
of Lemma 7.1 we know then that taking complex conjugates of the compooents
is a permutation o€, which leaves:; invariant. The second part of the statement
follows by the same argument.CI

e |

7.3. Proof of Theorem 1.1

If k=1 andé = & = 0 then from Corollary 7.1(ii) we obtaio= ¢; = 0.
We assume that > 1 and letP be a regulak polygon

P={(z1,.--,z) |z, =€, 0;=2n(j —D/k, j=1,....k}.

We will denote
ﬁl = |1— €i01|.
Consider set

2 1 b 1
My = {(51,...,.§k) ’sj =rz;, éloglogg <rBL < Eloglog;}.

We want to findr such that

c(rz1,...,rzx) =0.

Observe that (7.3) is a system df 2quations with just one unknown However we
claim that sincez;’s are vertices of a regulak polygon therefore by the results of
previous subsection we can reduce the number of equations to just 1. We will presentl
prove this claim.

First observe that for each 1 < j < k, rotation of the components §fby 6;is a
permutation of the components ®therefore the same is true for the components. of
It follows that it suffices to know just one ofi's to determine the rest.

Let's say that we want to findp = Rec; + ilmc;. As Imé&; = 0, from Corollary 7.1
we know that Imc; = 0. Thus it suffices to solve a single scalar equation

Recy(rzq,...,rzi) =0.

We know that

i IF (161 — &)

Reci(rzq, ..., rzx) =
= 0811

+ €11,
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where, for¢; =rz;, we have

1—C059j
|1— e

k k
IACELILD ) S R——

o’ 0811 olr log1/o|1— e

It is easy to see from the asymptotic formulas &brand the above that ag,; varies
between_%log log2 < rB, < 2loglog2 the expression for Re changes sign. Thus
there exists? such that

Recl(,OGZ]_, ceey ,OGZk) =0.

Since the remaining componentsmtan be obtained by rotating, therefore we have
thatc(p?zq, ..., p%z¢) =0.

Using the asymptotic formulas fav’(r) for large » we can easily show that®
satisfies

1 1 1
p” =loglog= + = logloglog=[1+ o(1)].
o 2 o

This ends the proof of the first part of the theorem.
To prove the second part we define

21=0, z;= e?ri=2)/=D) j=2,...,k,
and

2 1 b 1
M= {(51,---,§k) ‘5;’ =rzj, §|09 log— <rp1 < —|09|09—}~
o 2 o

Observe that by Corollary 7.1(iii) we have(&y, ..., &) =0 if £Ec Mg 1.

In order to show that;(rzs,...,rzx) =0, j =2, ..., k, we use the invariance of the
set{&,, ..., &} with respect to rotations to reduce the number of equations to one and
then we use basically the same argument as in the case considered above. The details
omitted.

7.4. Proof of Theorem 1.2

Let k = 2n be a positive integek > 2 andQ,, C R? be a set of points defined by

. rzj, j=1,...,n, §loglog: <rp; <%loglog
O =1§61§ = ,
Rz;, j=n+1....2n,r+1<R

wherez; = 2" U-V/k i =1 k.
We want to show that there exists= 05, such that

c(&)=0.

The system we need to solve now is a systemkioE2in equations with two variables
r, R. First we will show that this system can be reduced to a system of two equations
with two unknowns.
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To this end observe that because of the invariance of the “inner” polygon (i.e., sef
{&1, ..., &,}) with respect to rotations by; we only need to know one of the components
amongcy, ..., ¢,. Similarly because of the invariance of the outer polygon we only
need to know one of the components amang;, ..., cz,. This reduces the number
of equations to 4. In addition symmetry ¢f,, with respect tax axis and the fact that
Imé& =0=1Im¢,,, implies Imc¢; = 0=Imc, 1. Consequently it suffices to solve

Recy(§) =0,

Rec,11(§) =0,

whereé € 0,, depends om, R.

Unlike in the case of Theorem 1.1 it is not immediately obvious that system (7.4) has
a solution. Because of that we need a preliminary steprd.et > 0 and define a vector
field g(ro, 1) € R? by

o) — cg <;6 Lt )z":l—cosej
8§10 "= 159 1/0 loglog Lo |\ 1+ Bt 11—
i (1+28H(1 - cos@pl
I+ B e )2
1— cosh,

+2¢7U" (rofpr) ————.
B1

k
cs 1-—cosy;
g2(ro, r1) = Z

logl/ologlogl/o <1+,31 o — el

14871 - cosej)>
+ .
,-Z=1 11+ B L — )2

+ C7U/(I’1).

We will first show thatg (rg, 1) = 0 for some(rg, r1) and then use the topological degree
argument to solve (7.4).

LEMMA 7.2.—There existsrg, 71) such thatg (7o, 71) = 0 and

o= L (Iog |og1 + 1 log log Iogl [1+ 0(1)]>,
p1 o 2 .

- 1 1 1
71 =loglog= + = logloglog=[1+ o(1)].
o 2 o

Moreover, for eachM e (0, 1) the topological degree qf(ro, 1) is well defined in the
ball By, = {[(ro—Fo)?+ (r1—71)?|*/? < M loglog log2} and we haveleg(g, 0, By) = 1.

Proof. —Since the equations fawg, r1) are uncoupled the existence and the asymp-
totic formulas for(ro, 71) follow by a straightforward calculations using the asymptotic
formulas forU’. It is also easy to see that By, (7o, 71) iS a unique zero of.
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We will show now that de¢, O, By,) = 1. First observe that

Dg(fo. 71) = <2U (FoP)(1—costy) O )

0 U’ (r1)

By the asymptotic formulas fdy” andry, 71 for smallo we have deDg > O.
The proof is complete. O

We go back now to solving (7.4). By straightforward calculations we gef 105,

Recl(é)
1-cosd; & . r— RcOSH;
(rll—e ) —=2+Y F'(Ir — R |) ———— + e11,
g | JT=e] ; ( ) —Rem| T
Recn+1(-§)
R r COsY;
— 10
ZF R|1— "] ’Gfl ZF IR — W+8n+11

We consider(r, R — r) € By, whereM > 0 is to be determined. Far,
there existy’ > 0 such that

/ _ L0
U'lrll—e l)_o((logl/o)lﬂ') 2,...,n,

/ i0;
U(IR—re'%|) = <(Iogl/o)1+y> 2,...,n,
U’(R|1—e"9f|):o(

R—I")GBM

Togty ) It

We can write, by using the asymptotic formulas for

. s 1—cosl; <r— Rcosd,
Recl@)_logl/a<zr|1 ,9/|2+Z >

R619,|2
» 1—cosf
—i—2c‘7U/(r|1—e’9f|)71
B1
U'(R )+O< 1 )
“ ' (log /o) +7 )

k k
A cs 1—cosy; R —r cost;
Rec, = - —
s oot (St e

— |r — Re%i |2
+c;U(R—r)+ o( ! )
“ ' (og1/o)+r )’

We setr = rg, r1 = R — ro. Then solving system (7.4) is equivalent to solving
f(ro,r1) =0 wheref = (f1, f2) and
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R e
+2U" (rol1— ")) - _;losel + O<(|og 1/1(,)1+y )

Sfa(ro,r1) = Iogcji/a ( JZ; (ro :,;)Tfs_eii@/ |2 * ]z; leir::(ll__ce?i’i»
+U'(r) + O(W)'

For eachr € [0, 1] we consider now a vector field =zf + (1 —t)g. Using Lemma 7.2
we know thath°(7, 71) = 0 and deg:°, 0, B,,) = 1. It suffices to show that there exists
M > 0 such that

h'(ro,r1) #0, (ro,r1) € dBy.

To this end we writer,, = 7, + pn, m = 0,1. If (rg,r1) € 9By then |(pg, p1)| =
M logloglog2 and thus maf{ol, |1} > % logloglog2.
We also have

1 1 1 1 logloglog 1o
ro [ﬁl+l+,31_l O( loglog 1/ )]

+ =
ro ro+r loglogl/o

and therefore

s Ek: (2rg +r1)(1 — cosh;)

log1/o ro(ro +r1)|1— €% |2

j=2

1 k11— coss;
1+ _) o
(1 1+ ;0 jz_:z|1—e’9/|

Cs

- logl/o loglogl/o

(g osioar )

log1/o (loglog /o)t

with somex € (2/3,1). Similarly calculating other terms involvingrg, 1) in the
expressions fof f1, f2), usingg (o, 71) = 0 and Proposition 3.1 we get

1—coso,;

hi(ro, r1) = 2¢7[U’((Fo + po)|1 — €%/ [) — U (7ol 1 — €"*/1)] 5

1
O
i (Iog 1/s (loglog 1/o>1+K)
~patio+npo) (L~ COSP1) o ( 1 )
Pr(Fo + 1po)t/2 log 1/o (loglog 1/0) < )
wheren € [0, 1] and the last equality follows from the Mean Value Theorem and the
asymptotic formula folJ”. Likewise (with the same as above) we have

= 2c7p0e

; 1
R (ro. — —(F1+np1) P1 O( )
2(ro, 1) = c7p0e FoF i + l0g 1/ (l0glog o )1



84 M. DEL PINO ET AL./Ann. . H. Poincaré — AN 20 (2003) 53-85

It follows
C 1
! >
[# o, ri)| > log1/o (loglog /o )+M (b0, )] + O(Iog 1/0 (loglog J/a)1+'<>

C max{|pol, |1/} O( 1 )

~log1/c (loglog 1/o)1+M log 1/ (loglog 1/0 )+«
Clogloglog Yo ( 1 )

“log1/o (loglog 1/o)1+M log 1/0 (loglog 1/o )1+«

and therefore (7.2) is satisfied provided thdt < «/2 and o is sufficiently small.
Consequentlyf, hence(Rec, Rec, 1), has a zero irBy,. The proof is complete. O
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