A Morse lemma at infinity for Yamabe type problems on domains
Annales de l'I.H.P. Analyse non linéaire, Volume 20 (2003) no. 4, p. 543-577
@article{AIHPC_2003__20_4_543_0,
     author = {Ben Ayed, Mohamed and Chtioui, Hichem and Hammami, Mokhless},
     title = {A Morse lemma at infinity for Yamabe type problems on domains},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {20},
     number = {4},
     year = {2003},
     pages = {543-577},
     doi = {10.1016/S0294-1449(02)00020-3},
     zbl = {1109.35351},
     mrnumber = {1981400},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2003__20_4_543_0}
}
Ben Ayed, Mohamed; Chtioui, Hichem; Hammami, Mokhless. A Morse lemma at infinity for Yamabe type problems on domains. Annales de l'I.H.P. Analyse non linéaire, Volume 20 (2003) no. 4, pp. 543-577. doi : 10.1016/S0294-1449(02)00020-3. http://www.numdam.org/item/AIHPC_2003__20_4_543_0/

[1] Ahmedou M., El Mehdi K., Computation of the difference of topology at infinity for Yamabe-type problem on annuli-domains, Duke Math. J. 94 (1998), I: 215-229, II: 231-255. | MR 1638658 | Zbl 0966.35043

[2] Ahmedou M., El Mehdi K., On an elliptic problem with critical nonlinearity in expanding annuli, J. Funct. Anal. 163 (1999) 29-62. | MR 1682847 | Zbl 0954.35068

[3] Bahri A., Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser., 182, Longman, Harlow, 1989. | MR 1019828 | Zbl 0676.58021

[4] Bahri A., An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension, Duke Math. J. 281 (1996) 323-466. | MR 1395407 | Zbl 0856.53028

[5] A. Bahri, Scalar-curvature problems in high dimension spheres, to appear.

[6] Bahri A., Coron J.M., On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology on the domain, Comm. Pure Appl. Math. 41 (1988) 253-294. | MR 929280 | Zbl 0649.35033

[7] Bahri A., Coron J.M., The scalar curvature problem on the standard three-dimensional sphere, J. Func. Anal. 95 (1991) 106-172. | MR 1087949 | Zbl 0722.53032

[8] Bahri A., Li Y., Rey O., On a variational problem with lack of compactness: The topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations 3 (1995) 67-94. | MR 1384837 | Zbl 0814.35032

[9] Ben Ayed M., Chen Y., Chtioui H., Hammami M., On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J. 84 (1996) 633-667. | MR 1408540 | Zbl 0862.53034

[10] Ben Ayed M., Chtioui H., Hammami M., The scalar-curvature problem on higher dimensional spheres, Duke Math. J. 93 (1998) 379-424. | MR 1625991 | Zbl 0977.53035

[11] Brezis H., Coron J.M., Convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal. 89 (1985) 21-56. | MR 784102 | Zbl 0584.49024

[12] Rey O., The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990) 1-52. | MR 1040954 | Zbl 0786.35059

[13] Sacks J., Uhlenbeck K., The existence of minimal immersion of 2-spheres, Ann. Math. (2) 113 (1981) 1-24. | MR 604040 | Zbl 0462.58014

[14] Sedlacek S., A direct method for minimizing the Yang-Mills functional over 4-manifolds, Comm. Math. Phys. 86 (1982) 515-527. | MR 679200 | Zbl 0506.53016

[15] Struwe M., A global compactness result for elliptic boundary value problem involving limiting nonlinearities, Math. Z. 187 (1984) 511-517. | MR 760051 | Zbl 0535.35025

[16] Taubes C.H., Path-connected Yang-Mills moduli spaces, J. Differential Geom. 19 (1984) 337-392. | MR 755230 | Zbl 0551.53040