@article{AIHPC_2003__20_6_911_0, author = {Cellina, A. and Ferriero, A.}, title = {Existence of lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {911--919}, publisher = {Elsevier}, volume = {20}, number = {6}, year = {2003}, doi = {10.1016/S0294-1449(03)00010-6}, mrnumber = {2008683}, zbl = {1030.49039}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S0294-1449(03)00010-6/} }
TY - JOUR AU - Cellina, A. AU - Ferriero, A. TI - Existence of lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 911 EP - 919 VL - 20 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S0294-1449(03)00010-6/ DO - 10.1016/S0294-1449(03)00010-6 LA - en ID - AIHPC_2003__20_6_911_0 ER -
%0 Journal Article %A Cellina, A. %A Ferriero, A. %T Existence of lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 911-919 %V 20 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S0294-1449(03)00010-6/ %R 10.1016/S0294-1449(03)00010-6 %G en %F AIHPC_2003__20_6_911_0
Cellina, A.; Ferriero, A. Existence of lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 6, pp. 911-919. doi : 10.1016/S0294-1449(03)00010-6. http://archive.numdam.org/articles/10.1016/S0294-1449(03)00010-6/
[1] A. Cellina, Reparametrizations and the non-occurrence of the Lavrentiev phenomenon in the autonomous case of the calculus of variations, Preprint, 2001.
[2] A. Cellina, The classical problem of the calculus of variations in the autonomous case: Relaxation and Lipschitzianity of solutions, Trans. Amer. Math. Soc., submitted for publication. | MR | Zbl
[3] On the minimum problem for a class of non-coercive functionals, J. Differential Equations 127 (1996) 225-262. | MR | Zbl
, , ,[4] Optimization, Theory and Applications, Springer-Verlag, New York, 1983. | MR | Zbl
,[5] Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc. 289 (1985) 73-98. | MR | Zbl
, ,[6] Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976. | MR | Zbl
, ,[7] A general chain rule for derivatives and the change of variable formula for the Lebesgue integral, Amer. Math. Monthly 76 (1969) 514-520. | MR | Zbl
, ,Cité par Sources :