@article{AIHPC_2005__22_1_45_0, author = {del Pino, Manuel and Musso, Monica and Pistoia, Angela}, title = {Super-critical boundary bubbling in a semilinear {Neumann} problem}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {45--82}, publisher = {Elsevier}, volume = {22}, number = {1}, year = {2005}, doi = {10.1016/j.anihpc.2004.05.001}, mrnumber = {2114411}, zbl = {02141611}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2004.05.001/} }
TY - JOUR AU - del Pino, Manuel AU - Musso, Monica AU - Pistoia, Angela TI - Super-critical boundary bubbling in a semilinear Neumann problem JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 45 EP - 82 VL - 22 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2004.05.001/ DO - 10.1016/j.anihpc.2004.05.001 LA - en ID - AIHPC_2005__22_1_45_0 ER -
%0 Journal Article %A del Pino, Manuel %A Musso, Monica %A Pistoia, Angela %T Super-critical boundary bubbling in a semilinear Neumann problem %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 45-82 %V 22 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2004.05.001/ %R 10.1016/j.anihpc.2004.05.001 %G en %F AIHPC_2005__22_1_45_0
del Pino, Manuel; Musso, Monica; Pistoia, Angela. Super-critical boundary bubbling in a semilinear Neumann problem. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 1, pp. 45-82. doi : 10.1016/j.anihpc.2004.05.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2004.05.001/
[1] The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honour of G. Prodi, Scuola Norm. Sup. Pisa (1991) 9-25. | MR | Zbl
, ,[2] Geometry and topology of the boundary in the critical Neumann problem, J. Reine Angew. Math. 456 (1994) 1-18. | EuDML | MR | Zbl
, ,[3] The role of the mean curvature in semilinear Neumann problem involving critical exponent, Comm. Partial Differential Equations 20 (3-4) (1995) 591-631. | MR | Zbl
, , ,[4] Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal. 113 (1993) 318-350. | MR | Zbl
, , ,[5] Characterization of concentration points and -estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent, Differential Integral Equations 8 (1) (1995) 41-68. | MR | Zbl
, , ,[6] The effect of geometry of the domain boundary in an elliptic Neumann problem, Adv. Differential Equations 6 (8) (2001) 931-958. | MR | Zbl
, ,[7] Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math. 189 (2) (1999) 241-262. | MR | Zbl
, ,[8] “Bubble-tower” radial solutions in the slightly supercritical Brezis-Nirenberg problem, J. Differential Equations 193 (2) (2003) 280-306. | Zbl
, , ,[9] Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J. 48 (3) (1999) 883-898. | MR | Zbl
, ,[10] Two-bubble solutions in the super-critical Bahri-Coron's problem, Calc. Var. PDE 16 (2) (2003) 113-145. | MR | Zbl
, , ,[11] On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal. 31 (1) (1999) 63-79. | MR | Zbl
, , ,[12] Further studies on Emden's and similar differential equations, Quart. J. Math. 2 (1931) 259-288. | Zbl
,[13] A class of solutions for the Neumann problem , Duke Math. J. 79 (2) (1995) 309-334. | MR | Zbl
,[14] Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Calc. Var. Partial Differential Equations 11 (2) (2000) 143-175. | MR | Zbl
, , ,[15] Multi-peak solutions for a semilinear Neumann problem, Duke Math. J. 84 (1996) 739-769. | MR | Zbl
,[16] Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent, Math. Z. 229 (3) (1998) 443-474. | MR | Zbl
, ,[17] Estimates for boundary-bubbling solutions to an elliptic Neumann problem, J. Reine Angew. Math. 546 (2002) 201-235. | MR | Zbl
, ,[18] Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations 158 (1) (1999) 1-27. | MR | Zbl
, ,[19] Multiple spike layers in the shadow Gierer-Meinhardt system: existence of equilibria and the quasi-invariant manifold, Duke Math. J. 98 (1) (1999) 59-111. | MR | Zbl
,[20] On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations 23 (3-4) (1998) 487-545. | MR | Zbl
,[21] Prescribing scalar curvature on and related problems, part I, J. Differential Equations 120 (1996) 541-597. | MR | Zbl
,[22] Y.Y. Li, L. Zhang, Liouville and Harnack type theorems for semilinear elliptic equations, preprint.
[23] Locating the peaks of solutions via the maximum principle, I. The Neumann problem, Comm. Pure Appl. Math. 54 (2001) 1065-1095. | MR | Zbl
,[24] Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988) 1-27. | MR | Zbl
, , ,[25] On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (1991) 819-851. | MR | Zbl
, ,[26] Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J 70 (1993) 247-281. | MR | Zbl
, ,[27] Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J. 67 (1) (1992) 1-20. | MR | Zbl
, , ,[28] The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1) (1990) 1-52. | MR | Zbl
,[29] Boundary effect for an elliptic Neumann problem with critical nonlinearity, Comm. in PDE 22 (1997) 1055-1139. | MR | Zbl
,[30] An elliptic Neumann problem with critical nonlinearity in three dimensional domains, Comm. Contemp. Math. 1 (1999) 405-449. | MR | Zbl
,[31] O. Rey, J. Wei, Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity, part I: , J. Funct. Anal., submitted for publication. | Zbl
[32] Neumann problem of semilinear elliptic equations involving critical Sobolev exponent, J. Differential Equations 93 (1991) 283-301. | MR | Zbl
,[33] The effect of domain geometry on the number of positive solutions of Neumann problems with critical exponents, Differential Integral Equations 8 (1995) 1533-1554. | MR | Zbl
,[34] On the boundary spike layer solutions to a singularly perturbed Neumann problem, J. Differential Equations 134 (1) (1997) 104-133. | MR | Zbl
,Cité par Sources :