@article{AIHPC_2005__22_3_343_0, author = {Rifford, Ludovic}, title = {Stratified semiconcave {control-Lyapunov} functions and the stabilization problem}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {343--384}, publisher = {Elsevier}, volume = {22}, number = {3}, year = {2005}, doi = {10.1016/j.anihpc.2004.07.008}, mrnumber = {2136728}, zbl = {02192476}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2004.07.008/} }
TY - JOUR AU - Rifford, Ludovic TI - Stratified semiconcave control-Lyapunov functions and the stabilization problem JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 343 EP - 384 VL - 22 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2004.07.008/ DO - 10.1016/j.anihpc.2004.07.008 LA - en ID - AIHPC_2005__22_3_343_0 ER -
%0 Journal Article %A Rifford, Ludovic %T Stratified semiconcave control-Lyapunov functions and the stabilization problem %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 343-384 %V 22 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2004.07.008/ %R 10.1016/j.anihpc.2004.07.008 %G en %F AIHPC_2005__22_3_343_0
Rifford, Ludovic. Stratified semiconcave control-Lyapunov functions and the stabilization problem. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 3, pp. 343-384. doi : 10.1016/j.anihpc.2004.07.008. https://www.numdam.org/articles/10.1016/j.anihpc.2004.07.008/
[1] Structural properties of singularities of semiconcave functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (4) (1999) 719-740. | Numdam | MR | Zbl
, ,[2] On the singularities of convex functions, Manuscripta Math. 76 (3-4) (1992) 421-435. | MR | Zbl
, , ,[3] Patchy vector fields and asymptotic stabilization, ESAIM Control Optim. Calc. Var. 4 (1999) 445-471. | Numdam | MR | Zbl
, ,[4] Discontinuous control of nonholonomic systems, Systems Control Lett. 27 (1) (1996) 37-45. | MR | Zbl
,[5] Viability Theory, Birkhäuser Boston, Boston MA, 1991. | MR | Zbl
,[6] Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser Boston, Boston, MA, 1997. | MR | Zbl
, ,[7] Asymptotic stability and feedback stabilization, in: , , (Eds.), Differential Geometric Control Theory, Birkhäuser, Boston, 1983, pp. 181-191. | MR | Zbl
,[8] Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, vol. 58, Birkhäuser Boston, Boston, MA, 2004. | MR | Zbl
, ,[9] Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983. | MR | Zbl
,[10] Asymptotic controllability implies feedback stabilization, IEEE Trans. Automat. Control 42 (1997) 1394-1407. | MR | Zbl
, , , ,[11] Nonsmooth Analysis and Control Theory, Graduate Texts in Math., vol. 178, Springer-Verlag, New York, 1998. | MR | Zbl
, , , ,
[12] Proximal smoothness and the lower-
[13] On the stabilization of some nonlinear control systems: results, tools, and applications, in: Nonlinear Analysis, Differential Equations and Control (Montreal, QC, 1998), Kluwer Academic, Dordrecht, 1999, pp. 307-367. | MR | Zbl
,[14] Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1) (1983) 1-42. | MR | Zbl
, ,[15] The Theory of Matrices. Vol. 1, AMS Chelsea Publishing, Providence, RI, 1998. | MR | Zbl
,[16] Stratified Morse Theory, Springer-Verlag, Berlin, 1988. | MR | Zbl
, ,[17] Generalized Solutions of Hamilton-Jacobi Equations, Pitman, Boston, MA, 1982, (Advanced Publishing Program). | MR | Zbl
,[18] Continuous selections. I, Ann. of Math. (2) 63 (1956) 361-382. | MR | Zbl
,[19] A dual to Lyapunov stability theorem, Systems Control Lett. 42 (3) (2000) 161-168. | MR | Zbl
,[20] A. Rantzer, A converse Lyapunov stability theorem, Personnal communication.
[21] L. Rifford, Problèmes de stabilisation en théorie du controle, PhD thesis, Université Claude Bernard Lyon I, 2000.
[22] Stabilisation des systèmes globalement asymptotiquement commandables, C. R. Acad. Sci. Paris Sér. I Math. 330 (3) (2000) 211-216. | MR | Zbl
,[23] Existence of Lipschitz and semiconcave control-Lyapunov functions, SIAM J. Control Optim. 39 (4) (2000) 1043-1064. | MR | Zbl
,[24] Semiconcave control-Lyapunov functions and stabilizing feedbacks, SIAM J. Control Optim. 41 (3) (2002) 659-681. | MR | Zbl
,[25] Singularities of viscosity solutions and the stabilization problem in the plane, Indiana Univ. Math. J. 52 (5) (2003) 1373-1396. | MR | Zbl
,[26] A Morse-Sard theorem for the distance function on Riemannian manifolds, Manuscripta Math. 113 (2004) 251-265. | MR | Zbl
,[27] L. Rifford, On the existence of local smooth repulsive stabilizing feedbacks in dimension three, in preparation. | Zbl
[28] L. Rifford, The stabilization problem on surfaces, Rend. Semin. Mat. Torino, submitted for publication.
[29] Convex Analysis, Princeton University Press, Princeton, NJ, 1997, Reprint of the 1970 original, Princeton Paperbacks. | MR | Zbl
,[30] A Lyapunov-like characterization of asymptotic controllability, SIAM J. Control Optim. 21 (1983) 462-471. | MR | Zbl
,[31] Stability and stabilization: discontinuities and the effect of disturbances, in: Nonlinear Analysis, Differential Equations and Control (Montreal, QC, 1998), Kluwer Academic, Dordrecht, 1999, pp. 307-367. | MR | Zbl
,[32] Clocks and insensitivity to small measurement errors, ESAIM Control Optim. Calc. Var. 4 (1999) 537-557. | Numdam | MR | Zbl
,[33] Subanalytic sets and feedback control, J. Differential Equations 31 (1) (1979) 31-52. | MR | Zbl
,- On the construction of nearly time optimal continuous feedback laws around switching manifolds, ESAIM: Control, Optimisation and Calculus of Variations, Volume 26 (2020), p. 4 | DOI:10.1051/cocv/2019002
- Metric and Topological Tools, Calculus Without Derivatives, Volume 266 (2013), p. 1 | DOI:10.1007/978-1-4614-4538-8_1
- Elements of Differential Calculus, Calculus Without Derivatives, Volume 266 (2013), p. 117 | DOI:10.1007/978-1-4614-4538-8_2
- Elements of Convex Analysis, Calculus Without Derivatives, Volume 266 (2013), p. 187 | DOI:10.1007/978-1-4614-4538-8_3
- Elementary and Viscosity Subdifferentials, Calculus Without Derivatives, Volume 266 (2013), p. 263 | DOI:10.1007/978-1-4614-4538-8_4
- Circa-Subdifferentials, Clarke Subdifferentials, Calculus Without Derivatives, Volume 266 (2013), p. 357 | DOI:10.1007/978-1-4614-4538-8_5
- Limiting Subdifferentials, Calculus Without Derivatives, Volume 266 (2013), p. 407 | DOI:10.1007/978-1-4614-4538-8_6
- Graded Subdifferentials, Ioffe Subdifferentials, Calculus Without Derivatives, Volume 266 (2013), p. 463 | DOI:10.1007/978-1-4614-4538-8_7
- Discontinuous Feedback and Nonlinear Systems, IFAC Proceedings Volumes, Volume 43 (2010) no. 14, p. 1 | DOI:10.3182/20100901-3-it-2016.00301
- Closed loop stability of measure-driven impulsive control systems, Journal of Dynamical and Control Systems, Volume 16 (2010) no. 1, p. 1 | DOI:10.1007/s10883-010-9085-9
- Optimal Feedback Control: Foundations, Examples, and Experimental Results for a New Approach, Journal of Guidance, Control, and Dynamics, Volume 31 (2008) no. 2, p. 307 | DOI:10.2514/1.29532
- On the existence of local smooth repulsive stabilizing feedbacks in dimension three, Journal of Differential Equations, Volume 226 (2006) no. 2, p. 429 | DOI:10.1016/j.jde.2005.10.017
Cité par 12 documents. Sources : Crossref