Multi-bump type nodal solutions having a prescribed number of nodal domains : II
Annales de l'I.H.P. Analyse non linéaire, Volume 22 (2005) no. 5, pp. 609-631.
@article{AIHPC_2005__22_5_609_0,
     author = {Liu, Zhaoli and Wang, Zhi-Qiang},
     title = {Multi-bump type nodal solutions having a prescribed number of nodal domains : {II}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {609--631},
     publisher = {Elsevier},
     volume = {22},
     number = {5},
     year = {2005},
     doi = {10.1016/j.anihpc.2004.10.003},
     zbl = {02235971},
     mrnumber = {2171994},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2004.10.003/}
}
TY  - JOUR
AU  - Liu, Zhaoli
AU  - Wang, Zhi-Qiang
TI  - Multi-bump type nodal solutions having a prescribed number of nodal domains : II
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2005
DA  - 2005///
SP  - 609
EP  - 631
VL  - 22
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2004.10.003/
UR  - https://zbmath.org/?q=an%3A02235971
UR  - https://www.ams.org/mathscinet-getitem?mr=2171994
UR  - https://doi.org/10.1016/j.anihpc.2004.10.003
DO  - 10.1016/j.anihpc.2004.10.003
LA  - en
ID  - AIHPC_2005__22_5_609_0
ER  - 
%0 Journal Article
%A Liu, Zhaoli
%A Wang, Zhi-Qiang
%T Multi-bump type nodal solutions having a prescribed number of nodal domains : II
%J Annales de l'I.H.P. Analyse non linéaire
%D 2005
%P 609-631
%V 22
%N 5
%I Elsevier
%U https://doi.org/10.1016/j.anihpc.2004.10.003
%R 10.1016/j.anihpc.2004.10.003
%G en
%F AIHPC_2005__22_5_609_0
Liu, Zhaoli; Wang, Zhi-Qiang. Multi-bump type nodal solutions having a prescribed number of nodal domains : II. Annales de l'I.H.P. Analyse non linéaire, Volume 22 (2005) no. 5, pp. 609-631. doi : 10.1016/j.anihpc.2004.10.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2004.10.003/

[1] Bartsch T., Liu Z.L., Weth T., Sign changing solutions of superlinear Schrödinger equations, Comm. Partial Differential Equations 29 (2004) 25-42. | MR | Zbl

[2] Coti Zelati V., Rabinowitz P.H., Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc. 4 (1991) 623-627. | MR | Zbl

[3] Coti Zelati V., Rabinowitz P.H., Homoclinic type solutions for a semilinear elliptic PDE on R n , Comm. Pure Appl. Math. 45 (1992) 1217-1269. | MR | Zbl

[4] Liu Z.L., Sun J.X., Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. Differential Equations 172 (2001) 257-299. | MR | Zbl

[5] Liu Z.L., Wang Z.-Q., Multi-bump type nodal solutions having a prescribed number of nodal domains: I, Ann. I. H. Poincaré - AN 22 (2005) 597-608. | Numdam | MR | Zbl

[6] Van Heerden F., Homoclinic solutions for a semilinear elliptic equation with an asymptotically linear nonlinearity, Calc. Var. Partial Differential Equations 20 (2004) 431-455. | MR | Zbl

Cited by Sources: