@article{AIHPC_2005__22_6_753_0, author = {Schweizer, Ben}, title = {On the three-dimensional {Euler} equations with a free boundary subject to surface tension}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {753--781}, publisher = {Elsevier}, volume = {22}, number = {6}, year = {2005}, doi = {10.1016/j.anihpc.2004.11.001}, mrnumber = {2172858}, zbl = {02245285}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2004.11.001/} }
TY - JOUR AU - Schweizer, Ben TI - On the three-dimensional Euler equations with a free boundary subject to surface tension JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 753 EP - 781 VL - 22 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2004.11.001/ DO - 10.1016/j.anihpc.2004.11.001 LA - en ID - AIHPC_2005__22_6_753_0 ER -
%0 Journal Article %A Schweizer, Ben %T On the three-dimensional Euler equations with a free boundary subject to surface tension %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 753-781 %V 22 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2004.11.001/ %R 10.1016/j.anihpc.2004.11.001 %G en %F AIHPC_2005__22_6_753_0
Schweizer, Ben. On the three-dimensional Euler equations with a free boundary subject to surface tension. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 6, pp. 753-781. doi : 10.1016/j.anihpc.2004.11.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2004.11.001/
[1] Large time regularity of viscous surface waves, Arch. Rat. Mech. Anal. 84 (1984) 307-352. | MR | Zbl
,[2] On the Cauchy problem for a capillary drop. I. Irrotational motion, Math. Methods Appl. Sci. 21 (12) (1998) 1149-1183. | MR | Zbl
, ,[3] A bubble in ideal fluid with gravity, J. Differential Equations 81 (1989) 136-166. | MR | Zbl
, ,[4] On the motion of the free surface of a liquid, Comm. Pure Appl. Math. 53 (12) (2000) 1536-1602. | MR | Zbl
, ,[5] The equations of motion of a perfect fluid with free boundary are not well posed, Comm. Partial Differential Equations 12 (1987) 1175-1201. | MR | Zbl
,[6] Partial Differential Equations, Grad. Stud. Math., vol. 19, Amer. Math. Soc., 1998. | MR | Zbl
,[7] On the two-phase free boundary problem for two-dimensional water waves, Math. Ann. 309 (2) (1997) 199-223. | MR | Zbl
, , ,[8] On a free boundary problem for an incompressible ideal fluid in two space dimensions, Adv. Math. Sci. Appl. 9 (1) (1999) 415-472. | MR | Zbl
, , ,[9] Well-posedness of the Euler and Navier-Stokes equations in Lebesgue spaces, Rev. Mat. Iberoamericana 2 (1986) 73-88. | MR | Zbl
, ,[10] Non-Homogeneous Boundary Value Problems and Applications, I, Grundlehren Math. Wiss., vol. 181, Springer-Verlag, 1972. | Zbl
, ,[11] Free boundary problem for an incompressible ideal fluid with surface tension, Math. Models Methods Appl. Sci. 12 (12) (2002) 1725-1740. | MR | Zbl
, ,[12] The Euler equation on a bounded domain as a quasilinear evolution equation, Commun. Appl. Nonlinear Anal. 3 (3) (1996) 107-113. | MR | Zbl
,[13] An existence theorem for a free surface flow problem with open boundaries, Comm. Partial Differential Equations 17 (1992) 1387-1405. | MR | Zbl
,[14] A two-component flow with a viscous and an inviscid fluid, Comm. Partial Differential Equations 25 (2000) 887-901. | MR | Zbl
,[15] Theory of Function Spaces, Monographs Math., vol. 78, Birkhäuser, 1983. | MR | Zbl
,[16] Theory of Function Spaces II, Monographs Math., vol. 84, Birkhäuser, 1992. | MR | Zbl
,[17] On the Bernoulli free boundary problem with surface tension, in: (Ed.), Free boundary problems: theory and applications, CRC Res. Notes Math., vol. 409, Chapman & Hall, 1999, pp. 246-251. | MR | Zbl
,[18] Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math. 130 (1) (1997) 39-72. | MR | Zbl
,[19] Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc. 12 (2) (1999) 445-495. | MR | Zbl
,Cité par Sources :