Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions
Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 6, pp. 953-962.
@article{AIHPC_2007__24_6_953_0,
     author = {Conti, Sergio and Dolzmann, Georg and Kirchheim, Bernd},
     title = {Existence of {Lipschitz} minimizers for the three-well problem in solid-solid phase transitions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {953--962},
     publisher = {Elsevier},
     volume = {24},
     number = {6},
     year = {2007},
     doi = {10.1016/j.anihpc.2006.10.002},
     mrnumber = {2371114},
     zbl = {1131.74037},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2006.10.002/}
}
TY  - JOUR
AU  - Conti, Sergio
AU  - Dolzmann, Georg
AU  - Kirchheim, Bernd
TI  - Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2007
SP  - 953
EP  - 962
VL  - 24
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2006.10.002/
DO  - 10.1016/j.anihpc.2006.10.002
LA  - en
ID  - AIHPC_2007__24_6_953_0
ER  - 
%0 Journal Article
%A Conti, Sergio
%A Dolzmann, Georg
%A Kirchheim, Bernd
%T Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions
%J Annales de l'I.H.P. Analyse non linéaire
%D 2007
%P 953-962
%V 24
%N 6
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2006.10.002/
%R 10.1016/j.anihpc.2006.10.002
%G en
%F AIHPC_2007__24_6_953_0
Conti, Sergio; Dolzmann, Georg; Kirchheim, Bernd. Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 6, pp. 953-962. doi : 10.1016/j.anihpc.2006.10.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2006.10.002/

[1] Acerbi E., Fusco N., Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal. 86 (1984) 125-145. | MR | Zbl

[2] Adams J., Conti S., Desimone A., Soft elasticity and microstructure in smectic C elastomers, Cont. Mech. Thermodyn. 18 (2007) 319-334. | MR | Zbl

[3] Ball J.M., Some open problems in elasticity, in: Newton P., Holmes P., Weinstein A. (Eds.), Geometry, Mechanics, and Dynamics, Springer, New York, 2002, pp. 3-59. | MR | Zbl

[4] Ball J.M., James R.D., Fine phase mixtures as minimizers of the energy, Arch. Ration. Mech. Anal. 100 (1987) 13-52. | MR | Zbl

[5] Ball J.M., James R.D., Proposed experimental tests of a theory of fine microstructure and the two-well problem, Philos. Trans. R. Soc. Lond. A 338 (1992) 389-450. | Zbl

[6] Bhattacharya K., Self-accommodation in martensite, Arch. Ration. Mech. Anal. 120 (1992) 201-244. | MR | Zbl

[7] Chipot M., Kinderlehrer D., Equilibrium configurations of crystals, Arch. Ration. Mech. Anal. 103 (1988) 237-277. | MR | Zbl

[8] Conti S., Desimone A., Dolzmann G., Müller S., Otto F., Multiscale modeling of materials - the role of analysis, in: Kirkilionis M., Krömker S., Rannacher R., Tomi F. (Eds.), Trends in Nonlinear Analysis (Heidelberg), Springer, 2002, pp. 375-408. | Zbl

[9] Dacorogna B., Marcellini P., Sur le problème de Cauchy-Dirichlet pour les systèmes d'équations non linéaires du premier ordre, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 599-602. | Zbl

[10] Dacorogna B., Marcellini P., General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases, Acta Math. 178 (1997) 1-37. | Zbl

[11] Dacorogna B., Marcellini P., Implicit Partial Differential Equations, Progress in Nonlinear Differential Equations and their Applications, vol. 37, Birkhäuser, 1999. | MR | Zbl

[12] Desimone A., Dolzmann G., Macroscopic response of nematic elastomers via relaxation of a class of SO 3-invariant energies, Arch. Ration. Mech. Anal. 161 (2002) 181-204. | MR | Zbl

[13] Dolzmann G., Kirchheim B., Liquid-like behavior of shape memory alloys, C. R. Math. Acad. Sci. Paris, Ser. I 336 (2003) 441-446. | MR | Zbl

[14] Dolzmann G., Müller S., Microstructures with finite surface energy: the two-well problem, Arch. Ration. Mech. Anal. 132 (1995) 101-141. | MR | Zbl

[15] Gromov M., Partial Differential Relations, Springer-Verlag, 1986. | MR | Zbl

[16] B. Kirchheim, Lipschitz minimizers of the 3-well problem having gradients of bounded variation, Preprint 12, Max Planck Institute for Mathematics in the Sciences, Leipzig, 1998.

[17] Kirchheim B., Deformations with finitely many gradients and stability of quasiconvex hulls, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 289-294. | MR | Zbl

[18] B. Kirchheim, Rigidity and geometry of microstructures, MPI-MIS Lecture Notes 16, 2002.

[19] Kirchheim B., Müller S., Šverák V., Studying nonlinear pde by geometry in matrix space, in: Hildebrandt S., Karcher H. (Eds.), Geometric Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, 2003, pp. 347-395. | MR

[20] Marcellini P., Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals, Manuscripta Math. 51 (1985) 1-28. | MR | Zbl

[21] Morrey C.B., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952) 25-53. | MR | Zbl

[22] Müller S., Šverák V., Attainment results for the two-well problem by convex integration, in: Geometric Analysis and the Calculus of Variations, Internat. Press, Cambridge, MA, 1996, pp. 239-251. | MR | Zbl

[23] Müller S., Šverák V., Convex integration with constraints and applications to phase transitions and partial differential equations, J. Eur. Math. Soc. (JEMS) 1 (1999) 393-442. | MR | Zbl

[24] Müller S., Sychev M.A., Optimal existence theorems for nonhomogeneous differential inclusions, J. Funct. Anal. 181 (2001) 447-475. | MR | Zbl

[25] Šverák V., On the problem of two wells, in: Microstructure and Phase Transition, IMA Vol. Math. Appl., vol. 54, Springer, New York, 1993, pp. 183-189. | MR | Zbl

[26] Sychev M.A., Comparing two methods of resolving homogeneous differential inclusions, Calc. Var. Partial Differential Equations 13 (2001) 213-229. | MR | Zbl

Cité par Sources :