@article{AIHPC_2007__24_6_989_0, author = {Ben-Artzi, Matania and Le Floch, Philippe G.}, title = {Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {989--1008}, publisher = {Elsevier}, volume = {24}, number = {6}, year = {2007}, doi = {10.1016/j.anihpc.2006.10.004}, mrnumber = {2371116}, zbl = {1138.35055}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2006.10.004/} }
TY - JOUR AU - Ben-Artzi, Matania AU - Le Floch, Philippe G. TI - Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 989 EP - 1008 VL - 24 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2006.10.004/ DO - 10.1016/j.anihpc.2006.10.004 LA - en ID - AIHPC_2007__24_6_989_0 ER -
%0 Journal Article %A Ben-Artzi, Matania %A Le Floch, Philippe G. %T Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 989-1008 %V 24 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2006.10.004/ %R 10.1016/j.anihpc.2006.10.004 %G en %F AIHPC_2007__24_6_989_0
Ben-Artzi, Matania; Le Floch, Philippe G. Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 6, pp. 989-1008. doi : 10.1016/j.anihpc.2006.10.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2006.10.004/
[1] Hyperbolic conservation laws on manifolds. Total variation estimates and the finite volume method, Methods Appl. Anal. 12 (2005) 291-324. | MR | Zbl
, , ,[2] Hyperbolic Conservation Laws in Continuum Physics, Grundlehren Math. Wiss., vol. 325, Springer-Verlag, 2000. | MR | Zbl
,[3] Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal. 88 (1985) 223-270. | MR | Zbl
,[4] Geometric Measure Theory, Springer-Verlag, New York, 1969. | MR | Zbl
,[5] Nonlinear Hyperbolic Differential Equations, Math. Appl., vol. 26, Springer-Verlag, 1997. | MR | Zbl
,[6] First-order quasilinear equations with several space variables, English transl. in, Math. USSR-Sb. 10 (1970) 217-243. | Zbl
,[7] Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, Regional Conf. Series in Appl. Math., vol. 11, SIAM, Philadelphia, 1973. | MR | Zbl
,[8] Explicit formula for scalar conservation laws with boundary condition, Math. Methods Appl. Sci. 10 (1988) 265-287. | MR | Zbl
,[9] Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2002. | MR | Zbl
,[10] Explicit formula for weighted scalar non-linear conservation laws, Trans. Amer. Math. Soc. 308 (1988) 667-683. | MR | Zbl
, ,[11] A Comprehensive Introduction to Differential Geometry, vol. 4, Publish or Perish Inc., Houston, 1979.
,[12] The space BV and quasi-linear equations, Mat. USSR-Sb. 2 (1967) 225-267.
,Cité par Sources :