@article{AIHPC_2008__25_2_313_0, author = {Choe, Kwangseok and Kim, Namkwon}, title = {Blow-up solutions of the self-dual {Chern-Simons-Higgs} vortex equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {313--338}, publisher = {Elsevier}, volume = {25}, number = {2}, year = {2008}, doi = {10.1016/j.anihpc.2006.11.012}, mrnumber = {2396525}, zbl = {1145.35029}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2006.11.012/} }
TY - JOUR AU - Choe, Kwangseok AU - Kim, Namkwon TI - Blow-up solutions of the self-dual Chern-Simons-Higgs vortex equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 313 EP - 338 VL - 25 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2006.11.012/ DO - 10.1016/j.anihpc.2006.11.012 LA - en ID - AIHPC_2008__25_2_313_0 ER -
%0 Journal Article %A Choe, Kwangseok %A Kim, Namkwon %T Blow-up solutions of the self-dual Chern-Simons-Higgs vortex equation %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 313-338 %V 25 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2006.11.012/ %R 10.1016/j.anihpc.2006.11.012 %G en %F AIHPC_2008__25_2_313_0
Choe, Kwangseok; Kim, Namkwon. Blow-up solutions of the self-dual Chern-Simons-Higgs vortex equation. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 2, pp. 313-338. doi : 10.1016/j.anihpc.2006.11.012. http://archive.numdam.org/articles/10.1016/j.anihpc.2006.11.012/
[1] Profile of blow-up solutions to mean field equations with singular data, Comm. Partial Differential Equations 29 (2004) 1241-1265. | MR | Zbl
, , , ,[2] Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory, Comm. Math. Phys. 229 (2002) 3-47. | MR | Zbl
, ,[3] The dynamics of nucleation for the Cahn-Hilliard equation, SIAM J. Appl. Math. 53 (1993) 990-1008. | MR | Zbl
, ,
[4] Uniform estimates and blow-up behavior for solutions of
[5] Vortex condensation in the Chern-Simons-Higgs model: an existence theorem, Comm. Math. Phys. 168 (1995) 321-336. | MR | Zbl
, ,[6] The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys. 215 (2000) 119-142. | MR | Zbl
, ,[7] Non-topological multivortex solutions to the self-dual Chern-Simons-Higgs equation, Comm. Math. Phys. 231 (2002) 189-221. | MR | Zbl
, , ,[8] Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math. 55 (2002) 728-771. | MR | Zbl
, ,[9] Concentration phenomena of two-vortex solutions in a Chern-Simons model, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) III (2004) 369-397. | Numdam | MR | Zbl
, , ,[10] A nonlinear elliptic equation arising from gauge field theory and cosmology, Proc. Roy. Soc. Lond. A 446 (1994) 453-478. | MR | Zbl
, , , ,[11] Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991) 615-623. | MR | Zbl
, ,
[12] Qualitative properties of solutions to some nonlinear elliptic equations in
[13] Uniqueness of the topological multivortex solution in the self-dual Chern-Simons theory, J. Math. Phys. 46 (1) (2005) 012305. | MR | Zbl
,[14] Self duality equations for Ginzburg-Landau and Seiberg-Witten type functionals with 6th order potentials, Comm. Math. Phys. 217 (2001) 383-407. | MR | Zbl
, , , , ,[15] An analysis of the two-vortex case in the Chern-Simons-Higgs model, Calc. Var. Partial Differential Equations 7 (1998) 87-97. | MR | Zbl
, , , ,[16] Asymptotics for the vortex condensate solutions in Chern-Simons-Higgs theory, Asymptotic Anal. 28 (2001) 31-48. | MR | Zbl
,[17] Asymptotic limit for condensate solutions in the Abelian Chern-Simons-Higgs model, Proc. Amer. Math. Soc. 131 (2003) 1839-1845. | MR | Zbl
,[18] Asymptotic limit for condensate solutions in the Abelian Chern-Simons-Higgs model II, Proc. Amer. Math. Soc. 131 (2003) 3827-3832. | MR | Zbl
,[19] Multivortex solutions of the Abelian Chern-Simons-Higgs theory, Phys. Rev. Lett. 64 (1990) 2230-2233. | MR | Zbl
, , ,[20] Self-dual Chern-Simons vortices, Phys. Rev. Lett. 64 (1990) 2234-2237. | MR | Zbl
, ,[21] Harnack type inequality: the method of moving planes, Comm. Math. Phys. 200 (1999) 421-444. | MR | Zbl
,
[22] Blow-up analysis for solutions of
[23] On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (1991) 819-851. | MR | Zbl
, ,[24] On a sharp type inequality on two dimensional compact manifolds, Arch. Rational Mech. Anal. 145 (1998) 161-195. | MR | Zbl
, ,[25] Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. Partial Differential Equations 9 (1999) 31-94. | MR | Zbl
, ,
[26] On a class of elliptic problems in
[27] The existence of non-topological solitons in the self-dual Chern-Simons theory, Comm. Math. Phys. 149 (1992) 361-376. | MR | Zbl
, ,[28] Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys. 37 (1996) 3769-3796. | MR | Zbl
,[29] The existence of Chern-Simons vortices, Comm. Math. Phys. 137 (1991) 587-597. | MR | Zbl
,[30] Abrikosov's vortices in the critical coupling, SIAM J. Math. Anal. 23 (1992) 1125-1140. | MR | Zbl
, ,[31] Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (4) (1998) 459-492. | Numdam | MR | Zbl
, ,[32] Solitons in Field Theory and Nonlinear Analysis, Springer-Verlag, New York, 2001. | MR | Zbl
,Cité par Sources :