@article{AIHPC_2009__26_2_477_0, author = {Rousset, F. and Tzvetkov, N.}, title = {Transverse {Nonlinear} {Instability} for {Two-Dimensional} {Dispersive} {Models}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {477--496}, publisher = {Elsevier}, volume = {26}, number = {2}, year = {2009}, doi = {10.1016/j.anihpc.2007.09.006}, mrnumber = {2504040}, zbl = {1169.35374}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2007.09.006/} }
TY - JOUR AU - Rousset, F. AU - Tzvetkov, N. TI - Transverse Nonlinear Instability for Two-Dimensional Dispersive Models JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 477 EP - 496 VL - 26 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2007.09.006/ DO - 10.1016/j.anihpc.2007.09.006 LA - en ID - AIHPC_2009__26_2_477_0 ER -
%0 Journal Article %A Rousset, F. %A Tzvetkov, N. %T Transverse Nonlinear Instability for Two-Dimensional Dispersive Models %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 477-496 %V 26 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2007.09.006/ %R 10.1016/j.anihpc.2007.09.006 %G en %F AIHPC_2009__26_2_477_0
Rousset, F.; Tzvetkov, N. Transverse Nonlinear Instability for Two-Dimensional Dispersive Models. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 2, pp. 477-496. doi : 10.1016/j.anihpc.2007.09.006. https://www.numdam.org/articles/10.1016/j.anihpc.2007.09.006/
[1] On the Transverse Instability of Solitary Waves in the Kadomtsev-Petviashvili Equation, Phys. Lett. A 226 (1997) 187-192. | MR | Zbl
, , ,[2] The Stability of Solitary Waves, Proc. London Math. Soc. (3) 328 (1972) 153-183. | MR
,
[3] K. Blyuss, T. Bridges, G. Derks, Transverse instability and its long-term development for solitary waves of the
[4] Global Existence of Smooth Solutions and Stability of Solitary Waves for a Generalized Boussinesq Equation, Comm. Math. Phys. 118 (1988) 15-29. | MR | Zbl
, ,[5] Two Singular Dynamics of the Nonlinear Schrödinger Equation on a Plane Domain, Geom. Funct. Anal. 13 (2003) 1-19. | MR | Zbl
, , ,[6] Orbital Stability of Standing Waves for Some Nonlinear Schrödinger Equations, Comm. Math. Phys. 85 (1982) 549-561. | MR | Zbl
, ,[7] Dichotomies in Stability Theory, Lecture Notes in Mathematics, vol. 629, Springer-Verlag, Berlin, 1978. | MR | Zbl
,[8] Nonlinear Instability in an Ideal Fluid, Ann. Inst. H. Poincaré 14 (1997) 187-209. | Numdam | MR | Zbl
, , ,[9] Nonlinear Instability in Two-Dimensional Ideal Fluids: the Case of a Dominant Eigenvalue, Comm. Math. Phys. 243 (2003) 261-273. | MR | Zbl
, ,[10] On the Nonlinear Instability of Euler and Prandtl Equations, Comm. Pure Appl. Math. 53 (2000) 1067-1091. | MR | Zbl
,[11] Instability of Periodic BGK Equilibria, Comm. Pure Appl. Math. 48 (1995) 861-894. | MR | Zbl
, ,[12] Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981. | MR | Zbl
,[13] A. Ionescu, C. Kenig, Local and global well-posedness of periodic KP-I equations, Preprint, 2005. | MR
[14] Nonlinear Evolution of the Transverse Instability of Plane Envelope Solitons, Phys. Fluids 26 (1983) 1279-1287. | MR | Zbl
, ,[15] On the Stability of Solitary Waves in Weakly Dispersive Media, Soviet Phys. Dokl. 15 (1970) 539-541. | Zbl
, ,[16] Perturbation Theory for Linear Operators, Classics in Mathematics, Reprint of the 1980 edition, Springer-Verlag, Berlin, 1995. | MR | Zbl
,[17] Well-Posedness and Scattering Results for the Generalized Korteweg-De Vries Equation Via the Contraction Principle, Comm. Pure Appl. Math. 46 (1993) 527-629. | MR | Zbl
, , ,[18] On Finite Energy Solutions for the KP-I Equation, Math. Z. 256 (2008) 55-68. | MR
, ,[19] Strong Instability of Solitary Wave Solutions to a Kadomtsev-Petviashvili Equation in Three Dimensions, J. Differential Equations (2002) 153-170. | MR | Zbl
,
[20]
[21] Eigenvalues, and Instabilities of Solitary Waves, Philos. Trans. Roy. Soc. London A 340 (1992) 47-97. | MR | Zbl
, ,[22] Remarks on the Generalized Kadomtsev-Petviashvili Equations, Indiana Univ. Math. J. 42 (1993) 1011-1026. | MR | Zbl
,
[23] On 2D Nonlinear Schrödinger Equations With Data on
[24] Eigenfunction Expansions Associated to Second Order Differential Equations, Clarendon Press, Oxford, 1946. | MR | Zbl
,[25] Modulational Stability of Ground States of Nonlinear Schrödinger Equations, SIAM J. Math. Anal. 16 (1985) 472-491. | MR | Zbl
,[26] Instability and Nonlinear Oscillations of Solitons, JETP Lett. 22 (1975) 172-173.
,- Stability of Kadomtsev–Petviashvili multi-line solitons, Nonlinearity, Volume 38 (2025) no. 1, p. 015014 | DOI:10.1088/1361-6544/ad9795
- On the hyperbolic nonlinear Schrödinger equations, Advances in Continuous and Discrete Models, Volume 2024 (2024) no. 1 | DOI:10.1186/s13662-024-03811-w
- Transversal spectral instability of periodic traveling waves for the generalized Zakharov–Kuznetsov equation, Comptes Rendus. Mathématique, Volume 362 (2024) no. G6, p. 607 | DOI:10.5802/crmath.574
- Global well-posedness for Cauchy problems of Zakharov-Kuznetsov equations on cylindrical spaces, Electronic Journal of Differential Equations, Volume 2024 (2024) no. 01-??, p. 05 | DOI:10.58997/ejde.2024.05
- Center Stable Manifolds Around Line Solitary Waves of the Zakharov–Kuznetsov Equation, Journal of Dynamics and Differential Equations, Volume 36 (2024) no. 2, p. 871 | DOI:10.1007/s10884-023-10329-4
- Spectral analysis of the periodic b-KP equation under transverse perturbations, Mathematische Annalen, Volume 390 (2024) no. 4, p. 6315 | DOI:10.1007/s00208-024-02907-8
- A note on the well-posedness in the energy space for the generalized ZK equation posed on
, Nonlinear Differential Equations and Applications NoDEA, Volume 31 (2024) no. 5 | DOI:10.1007/s00030-024-00964-1 - Long time asymptotics of large data in the Kadomtsev–Petviashvili models, Nonlinearity, Volume 37 (2024) no. 5, p. 055017 | DOI:10.1088/1361-6544/ad359e
- Linear stability of elastic 2-line solitons for the KP-II equation, Quarterly of Applied Mathematics, Volume 82 (2023) no. 1, p. 115 | DOI:10.1090/qam/1676
- Transverse spectral instability in generalized Kadomtsev–Petviashvili equation, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 478 (2022) no. 2260 | DOI:10.1098/rspa.2021.0693
- Traveling waves and transverse instability for the fractional Kadomtsev–Petviashvili equation, Studies in Applied Mathematics, Volume 149 (2022) no. 1, p. 95 | DOI:10.1111/sapm.12494
- Transverse Stability of Line Soliton and Characterization of Ground State for Wave Guide Schrödinger Equations, Journal of Dynamics and Differential Equations, Volume 33 (2021) no. 3, p. 1297 | DOI:10.1007/s10884-020-09937-1
- Stability of Benney–Luke Line Solitary Waves in 2 Dimensions, SIAM Journal on Mathematical Analysis, Volume 52 (2020) no. 5, p. 4238 | DOI:10.1137/19m1253848
- Nondegeneracy, Morse Index and Orbital Stability of the KP-I Lump Solution, Archive for Rational Mechanics and Analysis, Volume 234 (2019) no. 3, p. 1335 | DOI:10.1007/s00205-019-01413-5
- The Phase Shift of Line Solitons for the KP-II Equation, Nonlinear Dispersive Partial Differential Equations and Inverse Scattering, Volume 83 (2019), p. 433 | DOI:10.1007/978-1-4939-9806-7_10
- Normal form for transverse instability of the line soliton with a nearly critical speed of propagation, Mathematical Modelling of Natural Phenomena, Volume 13 (2018) no. 2, p. 23 | DOI:10.1051/mmnp/2018024
- The Cauchy Problem for the Fractional Kadomtsev–Petviashvili Equations, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 3, p. 3172 | DOI:10.1137/17m1145379
- On Whitham and Related Equations, Studies in Applied Mathematics, Volume 140 (2018) no. 2, p. 133 | DOI:10.1111/sapm.12194
- Transverse nonlinear instability of Euler–Korteweg solitons, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 26 (2017) no. 1, p. 23 | DOI:10.5802/afst.1525
- Transverse instability of periodic and generalized solitary waves for a fifth-order KP model, Journal of Differential Equations, Volume 262 (2017) no. 4, p. 3235 | DOI:10.1016/j.jde.2016.11.025
- Stability for line solitary waves of Zakharov–Kuznetsov equation, Journal of Differential Equations, Volume 262 (2017) no. 8, p. 4336 | DOI:10.1016/j.jde.2017.01.006
- On Nonlinear Stabilization of Linearly Unstable Maps, Journal of Nonlinear Science, Volume 27 (2017) no. 5, p. 1641 | DOI:10.1007/s00332-017-9381-6
- Numerical study of blow-up and stability of line solitons for the Novikov–Veselov equation, Nonlinearity, Volume 30 (2017) no. 7, p. 2566 | DOI:10.1088/1361-6544/aa6f29
- Asymptotic linear stability of Benney–Luke line solitary waves in 2D, Nonlinearity, Volume 30 (2017) no. 9, p. 3419 | DOI:10.1088/1361-6544/aa7cc7
- Bilinear Strichartz estimates for the Zakharov–Kuznetsov equation and applications, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 32 (2015) no. 2, p. 347 | DOI:10.1016/j.anihpc.2013.12.003
- A numerical approach to Blow-up issues for Davey-Stewartson II systems, Communications on Pure Applied Analysis, Volume 14 (2015) no. 4, p. 1443 | DOI:10.3934/cpaa.2015.14.1443
- IST Versus PDE: A Comparative Study, Hamiltonian Partial Differential Equations and Applications, Volume 75 (2015), p. 383 | DOI:10.1007/978-1-4939-2950-4_14
- Transverse instability for a system of nonlinear Schrödinger equations, Discrete Continuous Dynamical Systems - B, Volume 19 (2014) no. 2, p. 565 | DOI:10.3934/dcdsb.2014.19.565
- Stability and instability for subsonic traveling waves of the nonlinear Schrödinger equation in dimension one, Analysis PDE, Volume 6 (2013) no. 6, p. 1327 | DOI:10.2140/apde.2013.6.1327
- Numerical study of the regularizing effect of the 3D weakly transverse BBM equations for long times, Applied Mathematics and Computation, Volume 219 (2013) no. 10, p. 5162 | DOI:10.1016/j.amc.2012.10.112
- Stability and Instability of the KDV Solitary Wave Under the KP-I Flow, Communications in Mathematical Physics, Volume 313 (2012) no. 1, p. 155 | DOI:10.1007/s00220-012-1495-y
- Numerical Study of Blow up and Stability of Solutions of Generalized Kadomtsev–Petviashvili Equations, Journal of Nonlinear Science, Volume 22 (2012) no. 5, p. 763 | DOI:10.1007/s00332-012-9127-4
- Stability of the line soliton of the KP-II equation under periodic transverse perturbations, Mathematische Annalen, Volume 352 (2012) no. 3, p. 659 | DOI:10.1007/s00208-011-0654-3
- The Gardner equation and the 𝐿²-stability of the 𝑁-soliton solution of the Korteweg-de Vries equation, Transactions of the American Mathematical Society, Volume 365 (2012) no. 1, p. 195 | DOI:10.1090/s0002-9947-2012-05548-6
- Global well-posedness for the KP-II equation on the background of a non-localized solution, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 28 (2011) no. 5, p. 653 | DOI:10.1016/j.anihpc.2011.04.004
- Transverse instability of the line solitary water-waves, Inventiones mathematicae, Volume 184 (2011) no. 2, p. 257 | DOI:10.1007/s00222-010-0290-7
- Transverse Spectral Stability of Small Periodic Traveling Waves for the KP Equation, Studies in Applied Mathematics, Volume 126 (2011) no. 2, p. 157 | DOI:10.1111/j.1467-9590.2010.00501.x
- Well-Posedness for the ZK Equation in a Cylinder and on the Background of a KdV Soliton, Communications in Partial Differential Equations, Volume 35 (2010) no. 9, p. 1674 | DOI:10.1080/03605302.2010.494195
- Transverse Instability of Periodic Traveling Waves in the Generalized Kadomtsev–Petviashvili Equation, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 6, p. 2681 | DOI:10.1137/090770758
- Well-posedness and scattering for the KP-II equation in a critical space, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 26 (2009) no. 3, p. 917 | DOI:10.1016/j.anihpc.2008.04.002
Cité par 40 documents. Sources : Crossref