Transverse Nonlinear Instability for Two-Dimensional Dispersive Models
Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 2, pp. 477-496.
@article{AIHPC_2009__26_2_477_0,
     author = {Rousset, F. and Tzvetkov, N.},
     title = {Transverse {Nonlinear} {Instability} for {Two-Dimensional} {Dispersive} {Models}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {477--496},
     publisher = {Elsevier},
     volume = {26},
     number = {2},
     year = {2009},
     doi = {10.1016/j.anihpc.2007.09.006},
     mrnumber = {2504040},
     zbl = {1169.35374},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2007.09.006/}
}
TY  - JOUR
AU  - Rousset, F.
AU  - Tzvetkov, N.
TI  - Transverse Nonlinear Instability for Two-Dimensional Dispersive Models
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2009
SP  - 477
EP  - 496
VL  - 26
IS  - 2
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2007.09.006/
DO  - 10.1016/j.anihpc.2007.09.006
LA  - en
ID  - AIHPC_2009__26_2_477_0
ER  - 
%0 Journal Article
%A Rousset, F.
%A Tzvetkov, N.
%T Transverse Nonlinear Instability for Two-Dimensional Dispersive Models
%J Annales de l'I.H.P. Analyse non linéaire
%D 2009
%P 477-496
%V 26
%N 2
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2007.09.006/
%R 10.1016/j.anihpc.2007.09.006
%G en
%F AIHPC_2009__26_2_477_0
Rousset, F.; Tzvetkov, N. Transverse Nonlinear Instability for Two-Dimensional Dispersive Models. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 2, pp. 477-496. doi : 10.1016/j.anihpc.2007.09.006. https://www.numdam.org/articles/10.1016/j.anihpc.2007.09.006/

[1] C Alexander J., Pego R. L., Sachs R. L., On the Transverse Instability of Solitary Waves in the Kadomtsev-Petviashvili Equation, Phys. Lett. A 226 (1997) 187-192. | MR | Zbl

[2] Benjamin T., The Stability of Solitary Waves, Proc. London Math. Soc. (3) 328 (1972) 153-183. | MR

[3] K. Blyuss, T. Bridges, G. Derks, Transverse instability and its long-term development for solitary waves of the (2+1)-Boussinesq equation, Preprint, 2002.

[4] Bona J., Sachs R., Global Existence of Smooth Solutions and Stability of Solitary Waves for a Generalized Boussinesq Equation, Comm. Math. Phys. 118 (1988) 15-29. | MR | Zbl

[5] Burq N., Gérard P., Tzvetkov N., Two Singular Dynamics of the Nonlinear Schrödinger Equation on a Plane Domain, Geom. Funct. Anal. 13 (2003) 1-19. | MR | Zbl

[6] Cazenave T., Lions P. L., Orbital Stability of Standing Waves for Some Nonlinear Schrödinger Equations, Comm. Math. Phys. 85 (1982) 549-561. | MR | Zbl

[7] Coppel W. A., Dichotomies in Stability Theory, Lecture Notes in Mathematics, vol. 629, Springer-Verlag, Berlin, 1978. | MR | Zbl

[8] Friedlander S., Strauss W., Vishik M., Nonlinear Instability in an Ideal Fluid, Ann. Inst. H. Poincaré 14 (1997) 187-209. | Numdam | MR | Zbl

[9] Friedlander S., Vishik M., Nonlinear Instability in Two-Dimensional Ideal Fluids: the Case of a Dominant Eigenvalue, Comm. Math. Phys. 243 (2003) 261-273. | MR | Zbl

[10] Grenier E., On the Nonlinear Instability of Euler and Prandtl Equations, Comm. Pure Appl. Math. 53 (2000) 1067-1091. | MR | Zbl

[11] Guo Y., Strauss W. A., Instability of Periodic BGK Equilibria, Comm. Pure Appl. Math. 48 (1995) 861-894. | MR | Zbl

[12] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981. | MR | Zbl

[13] A. Ionescu, C. Kenig, Local and global well-posedness of periodic KP-I equations, Preprint, 2005. | MR

[14] Janssen P., Rasmussen J., Nonlinear Evolution of the Transverse Instability of Plane Envelope Solitons, Phys. Fluids 26 (1983) 1279-1287. | MR | Zbl

[15] Kadomtsev B. B., Petviashvili V. I., On the Stability of Solitary Waves in Weakly Dispersive Media, Soviet Phys. Dokl. 15 (1970) 539-541. | Zbl

[16] Kato T., Perturbation Theory for Linear Operators, Classics in Mathematics, Reprint of the 1980 edition, Springer-Verlag, Berlin, 1995. | MR | Zbl

[17] Kenig C., Ponce G., Vega L., Well-Posedness and Scattering Results for the Generalized Korteweg-De Vries Equation Via the Contraction Principle, Comm. Pure Appl. Math. 46 (1993) 527-629. | MR | Zbl

[18] Koch H., Tzvetkov N., On Finite Energy Solutions for the KP-I Equation, Math. Z. 256 (2008) 55-68. | MR

[19] Liu Y., Strong Instability of Solitary Wave Solutions to a Kadomtsev-Petviashvili Equation in Three Dimensions, J. Differential Equations (2002) 153-170. | MR | Zbl

[20] Merle F., Vega L., L2 Stability of Solitons for KdV Equation, Int. Math. Res. Notices 13 (2003) 735-753. | MR | Zbl

[21] Pego R., Weinstein M., Eigenvalues, and Instabilities of Solitary Waves, Philos. Trans. Roy. Soc. London A 340 (1992) 47-97. | MR | Zbl

[22] Saut J.-C., Remarks on the Generalized Kadomtsev-Petviashvili Equations, Indiana Univ. Math. J. 42 (1993) 1011-1026. | MR | Zbl

[23] Takaoka H., Tzvetkov N., On 2D Nonlinear Schrödinger Equations With Data on R×T, J. Funct. Anal. 182 (2001) 427-442. | MR | Zbl

[24] Titchmarch E. C., Eigenfunction Expansions Associated to Second Order Differential Equations, Clarendon Press, Oxford, 1946. | MR | Zbl

[25] Weinstein M., Modulational Stability of Ground States of Nonlinear Schrödinger Equations, SIAM J. Math. Anal. 16 (1985) 472-491. | MR | Zbl

[26] Zakharov V. E., Instability and Nonlinear Oscillations of Solitons, JETP Lett. 22 (1975) 172-173.

  • Wu, Derchyi Stability of Kadomtsev–Petviashvili multi-line solitons, Nonlinearity, Volume 38 (2025) no. 1, p. 015014 | DOI:10.1088/1361-6544/ad9795
  • Saut, Jean-Claude; Wang, Yuexun On the hyperbolic nonlinear Schrödinger equations, Advances in Continuous and Discrete Models, Volume 2024 (2024) no. 1 | DOI:10.1186/s13662-024-03811-w
  • Natali, Fábio Transversal spectral instability of periodic traveling waves for the generalized Zakharov–Kuznetsov equation, Comptes Rendus. Mathématique, Volume 362 (2024) no. G6, p. 607 | DOI:10.5802/crmath.574
  • Osawa, Satoshi; Takaoka, Hideo Global well-posedness for Cauchy problems of Zakharov-Kuznetsov equations on cylindrical spaces, Electronic Journal of Differential Equations, Volume 2024 (2024) no. 01-??, p. 05 | DOI:10.58997/ejde.2024.05
  • Yamazaki, Yohei Center Stable Manifolds Around Line Solitary Waves of the Zakharov–Kuznetsov Equation, Journal of Dynamics and Differential Equations, Volume 36 (2024) no. 2, p. 871 | DOI:10.1007/s10884-023-10329-4
  • Chen, Robin Ming; Fan, Lili; Wang, Xingchang; Xu, Runzhang Spectral analysis of the periodic b-KP equation under transverse perturbations, Mathematische Annalen, Volume 390 (2024) no. 4, p. 6315 | DOI:10.1007/s00208-024-02907-8
  • Farah, Luiz Gustavo; Molinet, Luc A note on the well-posedness in the energy space for the generalized ZK equation posed on R×T, Nonlinear Differential Equations and Applications NoDEA, Volume 31 (2024) no. 5 | DOI:10.1007/s00030-024-00964-1
  • Mendez, Argenis J; Muñoz, Claudio; Poblete, Felipe; Pozo, Juan C Long time asymptotics of large data in the Kadomtsev–Petviashvili models, Nonlinearity, Volume 37 (2024) no. 5, p. 055017 | DOI:10.1088/1361-6544/ad359e
  • Mizumachi, Tetsu Linear stability of elastic 2-line solitons for the KP-II equation, Quarterly of Applied Mathematics, Volume 82 (2023) no. 1, p. 115 | DOI:10.1090/qam/1676
  • Bhavna; Kumar, Atul; Pandey, Ashish Kumar Transverse spectral instability in generalized Kadomtsev–Petviashvili equation, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 478 (2022) no. 2260 | DOI:10.1098/rspa.2021.0693
  • Borluk, Handan; Bruell, Gabriele; Nilsson, Dag Traveling waves and transverse instability for the fractional Kadomtsev–Petviashvili equation, Studies in Applied Mathematics, Volume 149 (2022) no. 1, p. 95 | DOI:10.1111/sapm.12494
  • Bahri, Yakine; Ibrahim, Slim; Kikuchi, Hiroaki Transverse Stability of Line Soliton and Characterization of Ground State for Wave Guide Schrödinger Equations, Journal of Dynamics and Differential Equations, Volume 33 (2021) no. 3, p. 1297 | DOI:10.1007/s10884-020-09937-1
  • Mizumachi, Tetsu; Shimabukuro, Yusuke Stability of Benney–Luke Line Solitary Waves in 2 Dimensions, SIAM Journal on Mathematical Analysis, Volume 52 (2020) no. 5, p. 4238 | DOI:10.1137/19m1253848
  • Liu, Yong; Wei, Juncheng Nondegeneracy, Morse Index and Orbital Stability of the KP-I Lump Solution, Archive for Rational Mechanics and Analysis, Volume 234 (2019) no. 3, p. 1335 | DOI:10.1007/s00205-019-01413-5
  • Mizumachi, Tetsu The Phase Shift of Line Solitons for the KP-II Equation, Nonlinear Dispersive Partial Differential Equations and Inverse Scattering, Volume 83 (2019), p. 433 | DOI:10.1007/978-1-4939-9806-7_10
  • Pelinovsky, Dmitry; Ibragimov, Ranis N. Normal form for transverse instability of the line soliton with a nearly critical speed of propagation, Mathematical Modelling of Natural Phenomena, Volume 13 (2018) no. 2, p. 23 | DOI:10.1051/mmnp/2018024
  • Linares, Felipe; Pilod, Didier; Saut, Jean-Claude The Cauchy Problem for the Fractional Kadomtsev–Petviashvili Equations, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 3, p. 3172 | DOI:10.1137/17m1145379
  • Klein, Christian; Linares, Felipe; Pilod, Didier; Saut, Jean‐Claude On Whitham and Related Equations, Studies in Applied Mathematics, Volume 140 (2018) no. 2, p. 133 | DOI:10.1111/sapm.12194
  • Paddick, Matthew Transverse nonlinear instability of Euler–Korteweg solitons, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 26 (2017) no. 1, p. 23 | DOI:10.5802/afst.1525
  • Haragus, Mariana; Wahlén, Erik Transverse instability of periodic and generalized solitary waves for a fifth-order KP model, Journal of Differential Equations, Volume 262 (2017) no. 4, p. 3235 | DOI:10.1016/j.jde.2016.11.025
  • Yamazaki, Yohei Stability for line solitary waves of Zakharov–Kuznetsov equation, Journal of Differential Equations, Volume 262 (2017) no. 8, p. 4336 | DOI:10.1016/j.jde.2017.01.006
  • Gallay, Thierry; Texier, Benjamin; Zumbrun, Kevin On Nonlinear Stabilization of Linearly Unstable Maps, Journal of Nonlinear Science, Volume 27 (2017) no. 5, p. 1641 | DOI:10.1007/s00332-017-9381-6
  • Kazeykina, Anna; Klein, Christian Numerical study of blow-up and stability of line solitons for the Novikov–Veselov equation, Nonlinearity, Volume 30 (2017) no. 7, p. 2566 | DOI:10.1088/1361-6544/aa6f29
  • Mizumachi, Tetsu; Shimabukuro, Yusuke Asymptotic linear stability of Benney–Luke line solitary waves in 2D, Nonlinearity, Volume 30 (2017) no. 9, p. 3419 | DOI:10.1088/1361-6544/aa7cc7
  • Pilod, Didier; Molinet, Luc Bilinear Strichartz estimates for the Zakharov–Kuznetsov equation and applications, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 32 (2015) no. 2, p. 347 | DOI:10.1016/j.anihpc.2013.12.003
  • Klein, Christian; Saut, Jean-Claude A numerical approach to Blow-up issues for Davey-Stewartson II systems, Communications on Pure Applied Analysis, Volume 14 (2015) no. 4, p. 1443 | DOI:10.3934/cpaa.2015.14.1443
  • Klein, Christian; Saut, Jean-Claude IST Versus PDE: A Comparative Study, Hamiltonian Partial Differential Equations and Applications, Volume 75 (2015), p. 383 | DOI:10.1007/978-1-4939-2950-4_14
  • Yamazaki, Yohei Transverse instability for a system of nonlinear Schrödinger equations, Discrete Continuous Dynamical Systems - B, Volume 19 (2014) no. 2, p. 565 | DOI:10.3934/dcdsb.2014.19.565
  • Chiron, David Stability and instability for subsonic traveling waves of the nonlinear Schrödinger equation in dimension one, Analysis PDE, Volume 6 (2013) no. 6, p. 1327 | DOI:10.2140/apde.2013.6.1327
  • Mammeri, Y. Numerical study of the regularizing effect of the 3D weakly transverse BBM equations for long times, Applied Mathematics and Computation, Volume 219 (2013) no. 10, p. 5162 | DOI:10.1016/j.amc.2012.10.112
  • Rousset, Frederic; Tzvetkov, Nikolay Stability and Instability of the KDV Solitary Wave Under the KP-I Flow, Communications in Mathematical Physics, Volume 313 (2012) no. 1, p. 155 | DOI:10.1007/s00220-012-1495-y
  • Klein, C.; Saut, J.-C. Numerical Study of Blow up and Stability of Solutions of Generalized Kadomtsev–Petviashvili Equations, Journal of Nonlinear Science, Volume 22 (2012) no. 5, p. 763 | DOI:10.1007/s00332-012-9127-4
  • Mizumachi, Tetsu; Tzvetkov, Nikolay Stability of the line soliton of the KP-II equation under periodic transverse perturbations, Mathematische Annalen, Volume 352 (2012) no. 3, p. 659 | DOI:10.1007/s00208-011-0654-3
  • Alejo, Miguel; Muñoz, Claudio; Vega, Luis The Gardner equation and the 𝐿²-stability of the 𝑁-soliton solution of the Korteweg-de Vries equation, Transactions of the American Mathematical Society, Volume 365 (2012) no. 1, p. 195 | DOI:10.1090/s0002-9947-2012-05548-6
  • Molinet, Luc; Saut, Jean-Claude; Tzvetkov, Nikolay Global well-posedness for the KP-II equation on the background of a non-localized solution, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 28 (2011) no. 5, p. 653 | DOI:10.1016/j.anihpc.2011.04.004
  • Rousset, Frederic; Tzvetkov, Nikolay Transverse instability of the line solitary water-waves, Inventiones mathematicae, Volume 184 (2011) no. 2, p. 257 | DOI:10.1007/s00222-010-0290-7
  • Haragus, Mariana Transverse Spectral Stability of Small Periodic Traveling Waves for the KP Equation, Studies in Applied Mathematics, Volume 126 (2011) no. 2, p. 157 | DOI:10.1111/j.1467-9590.2010.00501.x
  • Linares, Felipe; Pastor, Ademir; Saut, Jean-Claude Well-Posedness for the ZK Equation in a Cylinder and on the Background of a KdV Soliton, Communications in Partial Differential Equations, Volume 35 (2010) no. 9, p. 1674 | DOI:10.1080/03605302.2010.494195
  • Johnson, Mathew A.; Zumbrun, Kevin Transverse Instability of Periodic Traveling Waves in the Generalized Kadomtsev–Petviashvili Equation, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 6, p. 2681 | DOI:10.1137/090770758
  • Hadac, Martin; Herr, Sebastian; Koch, Herbert Well-posedness and scattering for the KP-II equation in a critical space, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 26 (2009) no. 3, p. 917 | DOI:10.1016/j.anihpc.2008.04.002

Cité par 40 documents. Sources : Crossref