Sun, Taoniu
A Note on Constant Geodesic Curvature Curves on Surfaces
Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 5 , p. 1569-1584
Zbl 1175.53068 | MR 2566700
doi : 10.1016/j.anihpc.2008.06.005
URL stable : http://www.numdam.org/item?id=AIHPC_2009__26_5_1569_0

Bibliographie

[1] Do Carmo M., Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976. MR 394451 | Zbl 0326.53001

[2] Druet O., Sharp Local Isoperimetric Inequalities Involving the Scalar Curvature, Proc. Amer. Math. Soc. 130 (8) (2002) 2351-2361. MR 1897460 | Zbl 1067.53026

[3] F. Pacard, X. Xu, Constant mean curvature spheres in Riemannian manifolds, preprint, 2007. MR 2481045 | Zbl 1165.53038

[4] Peng C. K., Chen Q., Differential Geometry, Higher Education Press, 2002.

[5] Ritoré M., Ros A., The Space of Index One Minimal Surfaces and Stable Constant Mean Curvature Surfaces Embedded in Flat Three Manifolds, Trans. Amer. Math. Soc. 348 (1) (January 1996). MR 1322955 | Zbl 0867.53007

[6] Rosenberg H., Constant Mean Curvature Surfaces in Homogeneously Regular 3-Manifolds, Bull. Austral. Math. Soc. 74 (2) (2006) 227-238. MR 2260491 | Zbl 1104.53057

[7] Schoen R., Yau S. T., Lectures on Differential Geometry, International Press, 1994. MR 1333601 | Zbl 0830.53001

[8] Willmore T. J., Riemannian Geometry, Oxford Univ. Press, NY, 1993. MR 1261641 | Zbl 0797.53002

[9] Ye R., Foliation by Constant Mean Curvature Spheres, Pacific J. Math. 147 (2) (1991) 381-396. MR 1084717 | Zbl 0722.53022