@article{AIHPC_2009__26_5_1925_0, author = {Garavello, Mauro and Piccoli, Benedetto}, title = {Conservation {Laws} on {Complex} {Networks}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1925--1951}, publisher = {Elsevier}, volume = {26}, number = {5}, year = {2009}, doi = {10.1016/j.anihpc.2009.04.001}, mrnumber = {2566716}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.04.001/} }
TY - JOUR AU - Garavello, Mauro AU - Piccoli, Benedetto TI - Conservation Laws on Complex Networks JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 1925 EP - 1951 VL - 26 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.04.001/ DO - 10.1016/j.anihpc.2009.04.001 LA - en ID - AIHPC_2009__26_5_1925_0 ER -
%0 Journal Article %A Garavello, Mauro %A Piccoli, Benedetto %T Conservation Laws on Complex Networks %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 1925-1951 %V 26 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.04.001/ %R 10.1016/j.anihpc.2009.04.001 %G en %F AIHPC_2009__26_5_1925_0
Garavello, Mauro; Piccoli, Benedetto. Conservation Laws on Complex Networks. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 5, pp. 1925-1951. doi : 10.1016/j.anihpc.2009.04.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.04.001/
[1] Resurrection of “second Order” Models of Traffic Flow, SIAM J. Appl. Math. 60 (3) (2000) 916-938, (electronic). | MR | Zbl
, ,[2] Gas Flow in Pipeline Networks, Netw. Heterog. Media 1 (1) (2006) 41-56. | MR | Zbl
, , ,[3] First Order Quasilinear Equations With Boundary Conditions, Comm. Partial Differential Equations 4 (1979) 1017-1034. | MR | Zbl
, , ,[4] A Second Order Model of Arc Junctions in Fluid Models of Traffic Networks, Netw. Heterog. Media 2 (2) (2007) 227-253. | MR | Zbl
, ,[5] Comparison of the Performance of Four Eulerian Network Flow Models for Strategic Air Traffic Management, Netw. Heterog. Media 2 (4) (2007) 569-595. | MR | Zbl
, , ,[6] First Order Models and Closure of the Mass Conservation Equation in the Mathematical Theory of Vehicular Traffic Flow, C.R. Mecanique 333 (2005) 843-851. | Zbl
, ,[7] An N-Populations Model for Traffic Flow, European J. Appl. Math. 14 (5) (2003) 587-612. | MR | Zbl
, ,[8] A Contractive Metric for Systems of Conservation Laws With Coinciding Shock and Rarefaction Curves, J. Differential Equations 106 (1993) 332-366. | MR | Zbl
,[9] Hyperbolic Systems of Conservation Laws. the One-Dimensional Cauchy Problem, Oxford Lecture Ser. Math. Appl., vol. 20, Oxford Univ. Press, Oxford, 2000. | MR | Zbl
,[10] Well-Posedness of the Cauchy Problem for Systems of Conservation Laws, Mem. Amer. Math. Soc. 146 (694) (2000), viii+134. | MR | Zbl
, , ,[11] Traffic Circles Timing of Traffic Lights for Cars Flow, Discrete Contin. Dyn. Syst. Ser. B 5 (3) (2005) 599-630. | MR | Zbl
, ,[12] Traffic Flow on a Road Network, SIAM J. Math. Anal. 36 (6) (2005) 1862-1886. | MR | Zbl
, , ,[13] Hyperbolic Phase Transitions in Traffic Flow, SIAM J. Appl. Math. 63 (2) (2002) 708-721, (electronic). | MR | Zbl
,[14] A Well Posed Riemann Problem for the P-System at a Junction, Netw. Heterog. Media 1 (3) (2006) 495-511. | MR | Zbl
, ,[15] On the Cauchy Problem for the P-System at a Junction, SIAM J. Appl. Math. 39 (5) (2008) 1456-1471. | MR | Zbl
, ,[16] R.M. Colombo, P. Goatin, B. Piccoli, Road network with phase transitions, preprint.
[17] Hyperbolic Conservation Laws in Continuum Physics, Grundlehren Math. Wiss., vol. 325, second ed., Springer-Verlag, Berlin, 2005. | MR | Zbl
,[18] A Fluid Dynamic Model for Supply Chains, Netw. Heterog. Media 1 (3) (2006) 379-398. | MR | Zbl
, ,[19] Packet Flow on Telecommunication Networks, SIAM J. Math. Anal. 38 (3) (2006) 717-740, (electronic). | MR | Zbl
, , ,[20] Boundary Conditions for Nonlinear Hyperbolic Systems of Conservation Laws, J. Differential Equations 71 (1) (1988) 93-122. | MR | Zbl
, ,[21] Conservation Laws With Discontinuous Flux, Netw. Heterog. Media 2 (1) (2007) 159-179, (electronic). | MR | Zbl
, , , ,[22] Source-Destination Flow on a Road Network, Commun. Math. Sci. 3 (3) (2005) 261-283. | MR | Zbl
, ,[23] Traffic Flow on a Road Network Using the Aw-Rascle Model, Comm. Partial Differential Equations 31 (1-3) (2006) 243-275. | MR | Zbl
, ,[24] Traffic Flow on Networks, AIMS Ser. Appl. Math., vol. 1, AIMS, 2006. | MR | Zbl
, ,[25] The Aw-Rascle Vehicular Traffic Flow Model With Phase Transitions, Math. Comput. Modelling 44 (3-4) (2006) 287-303. | MR | Zbl
,[26] Network Models for Supply Chains, Commun. Math. Sci. 3 (4) (2005) 545-559. | MR | Zbl
, , ,[27] Congestion on Multilane Highways, SIAM J. Appl. Math. 63 (3) (2003) 818-833, (electronic). | MR | Zbl
, , ,[28] Improved Fluid-Dynamic Model for Vehicular Traffic, Phys. Rev. E 51 (4) (Apr. 1995) 3164-3169.
,[29] Traffic and Related Self-Driven Many-Particle Systems, Rev. Modern Phys. 73 (2001) 1067-1141.
,[30] Self-Organized Network Flows, Netw. Heterog. Media 2 (2) (2007) 193-210. | MR | Zbl
, , ,[31] Optimization Criteria for Modelling Intersections of Vehicular Traffic Flow, Netw. Heterog. Media 1 (2) (2006) 193-210. | MR | Zbl
, , ,[32] A Mathematical Model of Traffic Flow on a Network of Unidirectional Roads, SIAM J. Math. Anal. 26 (4) (1995) 999-1017. | MR | Zbl
, ,[33] Front Tracking for Hyperbolic Conservation Laws, Appl. Math. Sci., vol. 152, Springer-Verlag, New York, 2002. | MR | Zbl
, ,[34] On Kinematic Waves. II. a Theory of Traffic Flow on Long Crowded Road, Proc. Roy. Soc. London. Ser. A 229 (1955) 317-345. | MR | Zbl
, ,[35] A Fluid Dynamic Model for T-Junctions, SIAM J. Math. Anal. 39 (6) (2008) 2016-2032. | MR | Zbl
, ,[36] Models of Freeway Traffic and Control, in Mathematical Models of Public Systems, Simul. Counc. Proc. 1 (1971).
,[37] Shock Waves on the Highway, Oper. Res. 4 (1956) 42-51. | MR
,[38] On the Fundamental Diagram of Traffic Flow, SIAM J. Appl. Math. 66 (4) (2006) 1150-1162, (electronic). | MR | Zbl
, ,[39] Linear and Nonlinear Waves, Pure Appl. Math., Wiley-Interscience, John Wiley & Sons, New York, 1974. | MR | Zbl
,[40] A Non-Equilibrium Traffic Model Devoid of Gas-Like Behavior, Transportation Research Part B 236 (2002) 275-290.
,Cité par Sources :