@article{AIHPC_2009__26_5_1971_0, author = {Pujals, Enrique R. and Sambarino, Martin}, title = {Density of {Hyperbolicity} and {Tangencies} in {Sectional} {Dissipative} {Regions}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1971--2000}, publisher = {Elsevier}, volume = {26}, number = {5}, year = {2009}, doi = {10.1016/j.anihpc.2009.04.003}, mrnumber = {2566718}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.04.003/} }
TY - JOUR AU - Pujals, Enrique R. AU - Sambarino, Martin TI - Density of Hyperbolicity and Tangencies in Sectional Dissipative Regions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 1971 EP - 2000 VL - 26 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.04.003/ DO - 10.1016/j.anihpc.2009.04.003 LA - en ID - AIHPC_2009__26_5_1971_0 ER -
%0 Journal Article %A Pujals, Enrique R. %A Sambarino, Martin %T Density of Hyperbolicity and Tangencies in Sectional Dissipative Regions %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 1971-2000 %V 26 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.04.003/ %R 10.1016/j.anihpc.2009.04.003 %G en %F AIHPC_2009__26_5_1971_0
Pujals, Enrique R.; Sambarino, Martin. Density of Hyperbolicity and Tangencies in Sectional Dissipative Regions. Annales de l'I.H.P. Analyse non linéaire, Volume 26 (2009) no. 5, pp. 1971-2000. doi : 10.1016/j.anihpc.2009.04.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.04.003/
[1] Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Springer-Verlag, 1975. | MR | Zbl
,[2] SRB Measures for Partially Hyperbolic Systems Whose Central Direction Is Mostly Contracting, Israel J. Math. 115 (2000) 157-193. | MR | Zbl
, ,[3] One-Dimensional Dynamics, Springer-Verlag, 1993. | MR | Zbl
, ,[4] Necessary Conditions for Stability of Diffeomorphisms, Trans. Amer. Math. Soc. 158 (1971) 301-308. | MR | Zbl
,[5] Anosov Diffeomorphisms, in: Proc. Symp. Pure Math., Vol. 14, AMS, Providence, 1970, pp. 133-164. | MR | Zbl
,[6] Expansiveness, Hyperbolicity and Hausdorff Dimension, Comm. Math. Phys. 126 (2) (1989) 249-262. | MR | Zbl
,[7] Invariant Manifolds, Lecture Notes in Math., vol. 583, Springer-Verlag, 1977. | MR | Zbl
, , ,[8] Ergodic Theory and Differential Dynamics, Springer-Verlag, New York, 1987. | MR | Zbl
,[9] An Ergodic Closing Lemma, Ann. of Math. 116 (1982) 503-540. | MR | Zbl
,[10] Non-Density of Axiom a(a) on , Proc. AMS Symp. Pure Math. 14 (1970) 191-202. | Zbl
,[11] Diffeomorphism With Infinitely Many Sinks, Topology 13 (1974) 9-18. | MR | Zbl
,[12] The Abundance of Wild Hyperbolic Sets and Nonsmooth Stable Sets for Diffeomorphisms, Publ. Math. IHES 50 (1979) 101-151. | Numdam | MR | Zbl
,[13] Hyperbolic Limit Sets, Trans. Amer. Math. Soc. 167 (1972) 125-150. | MR | Zbl
,[14] A Global View of Dynamics and a Conjecture on the Denseness of Finitude of Attractors, Astérisque 261 (2000) xiii-xiv, 335-347. | Numdam | MR | Zbl
,[15] A Global Perspective for Non-Conservative Dynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (4) (2005) 485-507. | Numdam | MR | Zbl
,[16] On a Conjecture Due to Smale, Diff. Uravnenija 8 (1972) 268-282. | MR | Zbl
,[17] Homoclinic Tangencies and Hyperbolicity for Surface Diffeomorphisms, Ann. of Math. 151 (3) (2000) 961-1023. | MR | Zbl
, ,[18] On Homoclinic Tangencies, Hyperbolicity, Creation of Homoclinic Orbits and Variation of Entropy, Nonlinearity 13 (2000) 921-926. | MR | Zbl
, ,[19] Integrability on Codimension One Dominated Splitting, Bull. Braz. Math. Soc. (N.S.) 38 (1) (2007) 1-19. | MR | Zbl
, ,[20] On the Dynamics of Dominated Splitting, Ann. of Math. 169 (2009) 675-740. | MR | Zbl
, ,[21] Hyperbolicity Sensitive-Chaotic Dynamics at Homoclinic Bifurcations, Cambridge University Press, 1993. | MR | Zbl
, ,[22] High Dimension Diffeomorphisms Displaying Infinitely Many Periodic Attractors, Ann. of Math. (2) 140 (1) (1994) 207-250. | MR | Zbl
, ,[23] Global Stability of Dynamical Systems, Springer-Verlag, 1987. | MR | Zbl
,[24] Homoclinic Tangencies and Dominated Splittings, Nonlinearity 15 (5) (2002) 1445-1469. | MR | Zbl
,Cited by Sources: