A blow-up criterion for compressible viscous heat-conductive flows
Annales de l'I.H.P. Analyse non linéaire, Volume 27 (2010) no. 1, p. 337-350

We study an initial boundary value problem for the three-dimensional Navier–Stokes equations of viscous heat-conductive fluids in a bounded smooth domain. We establish a blow-up criterion for the local strong solutions in terms of the temperature and the gradient of velocity only, similar to the Beale–Kato–Majda criterion for ideal incompressible flows.

Nous étudions un problème de valeur limite initiale pour les équations de Navier–Stokes tridimensionnelles des fluides visqueux conducteurs de chaleur dans un domaine délimité lisse. Nous établissons un critère d'explosion pour les solutions fortes en termes de température et de gradient de vitesse seulement, semblable au critère de Beale–Kato–Majda pour les écoulements incompressibles idéaux.

DOI : https://doi.org/10.1016/j.anihpc.2009.09.012
Classification:  76N10,  35M10,  35Q30
Keywords: Blow-up criterion, Strong solutions, Compressible Navier–Stokes equations, Heat-conductive flows
@article{AIHPC_2010__27_1_337_0,
     author = {Fan, Jishan and Jiang, Song and Ou, Yaobin},
     title = {A blow-up criterion for compressible viscous heat-conductive flows},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {27},
     number = {1},
     year = {2010},
     pages = {337-350},
     doi = {10.1016/j.anihpc.2009.09.012},
     zbl = {1352.35109},
     mrnumber = {2580513},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2010__27_1_337_0}
}
Fan, Jishan; Jiang, Song; Ou, Yaobin. A blow-up criterion for compressible viscous heat-conductive flows. Annales de l'I.H.P. Analyse non linéaire, Volume 27 (2010) no. 1, pp. 337-350. doi : 10.1016/j.anihpc.2009.09.012. http://www.numdam.org/item/AIHPC_2010__27_1_337_0/

[1] J.T. Beale, T. Kato, A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys. 94 (1984), 61-66 | MR 763762 | Zbl 0573.76029

[2] Y. Cho, H. Kim, Existence results for viscous polytropic fluids with vacuum, J. Differential Equations 228 (2006), 377-411 | MR 2289539 | Zbl 1139.35384

[3] J. Fan, S. Jiang, Blow-up criteria for the Navier–Stokes equations of compressible fluids, J. Hyperbolic Differ. Equ. 5 (2008), 167-185 | MR 2405855 | Zbl 1142.76049

[4] E. Feireisl, A. Novotný, H. Petzeltová, On the existence of globally defined weak solutions to the Navier–Stokes equations of isentropic compressible fluids, J. Math. Fluid Mech. 3 (2001), 358-392 | MR 1867887 | Zbl 0997.35043

[5] E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford Univ. Press, Oxford (2004) | MR 2040667 | Zbl 1080.76001

[6] E. Feireisl, On the motion of a viscous, compressible and heat conducting fluid, Indiana Univ. Math. J. 53 (2004), 1705-1738 | MR 2106342 | Zbl 1087.35078

[7] D. Hoff, Discontinuous solutions of the Navier–Stokes equations for multidimensional flows of heat-conducting fluids, Arch. Ration. Mech. Anal. 139 (1997), 303-354 | MR 1480244 | Zbl 0904.76074

[8] D. Hoff, Compressible flow in a half-space with Navier boundary conditions, J. Math. Fluid Mech. 7 (2005), 315-338 | MR 2166979 | Zbl 1095.35025

[9] X. Huang, Z. Xin, A blow-up criterion for classical solutions to the compressible Navier–Stokes equations, 19 March, 2009, arXiv:0903.3090v2 [math-ph] | MR 2608324

[10] S. Jiang, Global spherically symmetric solutions to the equations of a viscous polytropic ideal gas in an exterior domain, Comm. Math. Phys. 178 (1996), 339-374 | MR 1389908 | Zbl 0858.76069

[11] S. Jiang, P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier–Stokes equations, Comm. Math. Phys. 215 (2001), 559-581 | MR 1810944 | Zbl 0980.35126

[12] S. Jiang, P. Zhang, Axisymmetric solutions of the 3-D Navier–Stokes equations for compressible isentropic fluids, J. Math. Pures Appl. 82 (2003), 949-973 | MR 2005201 | Zbl 1109.35088

[13] P.L. Lions, Mathematical Topics in Fluid Mechanics, vol. 2, Oxford Lecture Ser. Math. Appl. vol. 10, Clarendon Press, Oxford (1998) | MR 1637634 | Zbl 0908.76004

[14] A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ. 20 (1980), 67-104 | MR 564670 | Zbl 0429.76040

[15] A. Matsumura, T. Nishida, The initial boundary value problems for the equations of motion of compressible and heat-conductive fluids, Comm. Math. Phys. 89 (1983), 445-464 | MR 713680 | Zbl 0543.76099

[16] O. Rozanova, Blow up of smooth solutions to the compressible Navier–Stokes equations with the data highly decreasing at infinity, J. Differential Equations 245 (2008), 1762-1774 | MR 2433485 | Zbl 1154.35070

[17] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Johann Ambrosius Barth, Heidelberg (1995) | MR 1328645 | Zbl 0830.46028

[18] Z. Xin, Blow up of smooth solutions to the compressible Navier–Stokes equation with compact density, Comm. Pure Appl. Math. 51 (1998), 229-240 | MR 1488513 | Zbl 0937.35134