An abstract Nash–Moser theorem with parameters and applications to PDEs
Annales de l'I.H.P. Analyse non linéaire, Volume 27 (2010) no. 1, p. 377-399

We prove an abstract Nash–Moser implicit function theorem with parameters which covers the applications to the existence of finite dimensional, differentiable, invariant tori of Hamiltonian PDEs with merely differentiable nonlinearities. The main new feature of the abstract iterative scheme is that the linearized operators, in a neighborhood of the expected solution, are invertible, and satisfy the “tame” estimates, only for proper subsets of the parameters. As an application we show the existence of periodic solutions of nonlinear wave equations on Riemannian Zoll manifolds. A point of interest is that, in presence of possibly very large “clusters of small divisors”, due to resonance phenomena, it is more natural to expect solutions with only Sobolev regularity.

@article{AIHPC_2010__27_1_377_0,
     author = {Berti, M. and Bolle, P. and Procesi, M.},
     title = {An abstract Nash--Moser theorem with parameters and applications to PDEs},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {27},
     number = {1},
     year = {2010},
     pages = {377-399},
     doi = {10.1016/j.anihpc.2009.11.010},
     zbl = {1203.47038},
     mrnumber = {2580515},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2010__27_1_377_0}
}
Berti, M.; Bolle, P.; Procesi, M. An abstract Nash–Moser theorem with parameters and applications to PDEs. Annales de l'I.H.P. Analyse non linéaire, Volume 27 (2010) no. 1, pp. 377-399. doi : 10.1016/j.anihpc.2009.11.010. http://www.numdam.org/item/AIHPC_2010__27_1_377_0/

[1] D. Bambusi, J.M. Delort, B. Grebert, J. Szeftel, Almost global existence for Hamiltonian semilinear Klein–Gordon equations with small Cauchy data on Zoll manifolds, Comm. Pure Appl. Math. 60 no. 11 (2007), 1665-1690 | MR 2349351 | Zbl 1170.35481

[2] M. Berti, Nonlinear Oscillations in Hamiltonian PDEs, Progr. Nonlinear Differential Equations Appl. vol. 74, Birkhäuser, Boston (2007) | Zbl 1146.35002

[3] M. Berti, P. Bolle, Cantor families of periodic solutions of wave equations with C k nonlinearities, NoDEA 15 (2008), 247-276 | MR 2408354 | Zbl 1155.35004

[4] M. Berti, P. Bolle, Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions, Archive for Rational Mechanics and Analysis, published on line 21-1-2009 | MR 2592290 | Zbl 1186.35113

[5] M. Berti, M. Procesi, Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces, preprint, 2009 | MR 2831876 | Zbl 1260.37045

[6] A. Besse, Manifolds all of whose Geodesics are Closed, Results in Mathematics and Related Areas, vol. 93, Springer-Verlag, Berlin/New York (1978) | MR 496885 | Zbl 0387.53010

[7] J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Int. Math. Res. Not. 11 (1994), 475-497 | MR 1316975 | Zbl 0817.35102

[8] J. Bourgain, Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. Funct. Anal. 5 (1995), 629-639 | MR 1345016 | Zbl 0834.35083

[9] J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math. 148 (1998), 363-439 | MR 1668547 | Zbl 0928.35161

[10] J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications, Ann. of Math. Stud. vol. 158, Princeton University Press, Princeton (2005) | MR 2100420 | Zbl 1137.35001

[11] L. Chierchia, J. You, KAM tori for 1D nonlinear wave equations with periodic boundary conditions, Comm. Math. Phys. 211 (2000), 497-525 | MR 1754527 | Zbl 0956.37054

[12] Y. Colin De Verdière, Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques, Comment. Math. Helv. 54 (1979), 508-522 | MR 543346 | Zbl 0459.58014

[13] W. Craig, Problèmes de petits diviseurs dans les équations aux dérivées partielles, Panor. Syntheses vol. 9, Société Mathématique de France, Paris (2000) | MR 1804420

[14] W. Craig, C.E. Wayne, Newton's method and periodic solutions of nonlinear wave equation, Comm. Pure Appl. Math. 4 (1993), 1409-1498 | MR 1239318 | Zbl 0794.35104

[15] L.H. Eliasson, S. Kuksin, KAM for the nonlinear Schrödinger equation, Annals of Math., in press | MR 2680422

[16] G. Gentile, V. Mastropietro, Construction of periodic solutions of nonlinear wave equations with Dirichlet boundary conditions by the Lindstedt series method, J. Math. Pures Appl. (9) 83 no. 8 (2004), 1019-1065 | MR 2082491 | Zbl 1065.35028

[17] G. Gentile, V. Mastropietro, M. Procesi, Periodic solutions for completely resonant nonlinear wave equations, Comm. Math. Phys. 256 no. 2 (2005), 437-490 | MR 2160800 | Zbl 1094.35021

[18] G. Gentile, M. Procesi, Periodic solutions for a class of nonlinear partial differential equations in higher dimension, Comm. Math. Phys. 289 no. 3 (2009), 863-906 | MR 2511654 | Zbl 1172.35065

[19] G. Iooss, P. Plotnikov, J. Toland, Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal. 177 no. 3 (2005), 367-478 | MR 2187619 | Zbl 1176.76017

[20] R.S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 65-222 | MR 656198 | Zbl 0499.58003

[21] L. Hörmander, On the Nash Moser implicit function theorem, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 255-259 | MR 802486 | Zbl 0591.58003

[22] S. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funktsional. Anal. i Prilozhen. 21 (1987), 22-37 | MR 911772 | Zbl 0631.34069

[23] S. Kuksin, Analysis of Hamiltonian PDEs, Oxford Lecture Ser. Math. Appl. vol. 19, Oxford University Press (2000) | MR 1857574

[24] J. Moser, A new technique for the construction of solutions of nonlinear differential equations, Proc. Natl. Acad. Sci. 47 (1961), 1824-1831 | MR 132859 | Zbl 0104.30503

[25] J. Moser, A rapidly convergent iteration method and non-linear partial differential equations I & II, Ann. Sc. Norm. Super. Pisa (3) 20 (1966), 265-315 | Numdam | MR 199523 | Zbl 0144.18202

[26] J. Pöschel, Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math. 35 (1982), 653-695 | MR 668410 | Zbl 0542.58015

[27] J. Pöschel, A KAM-theorem for some nonlinear PDEs, Ann. Sc. Norm. Super. Pisa Cl. Sci. 23 (1996), 119-148 | Numdam | MR 1401420 | Zbl 0870.34060

[28] D. Salamon, E. Zehnder, KAM theory in configuration space, Comment. Math. Helv. 64 (1989), 84-132 | MR 982563 | Zbl 0682.58014

[29] E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys. 127 (1990), 479-528 | MR 1040892 | Zbl 0708.35087

[30] E. Zehnder, Generalized implicit function theorems with applications to some small divisors problems I–II, Comm. Pure Appl. Math. 28 (1975), 91-140, Comm. Pure Appl. Math. 29 (1976), 49-113 | MR 380867 | Zbl 0309.58006