A kinetic model for coagulation–fragmentation
Annales de l'I.H.P. Analyse non linéaire, Volume 27 (2010) no. 3, p. 809-836
The aim of this paper is to show an existence theorem for a kinetic model of coagulation–fragmentation with initial data satisfying the natural physical bounds, and assumptions of finite number of particles and finite L p -norm. We use the notion of renormalized solutions introduced by DiPerna and Lions (1989) [3], because of the lack of a priori estimates. The proof is based on weak-compactness methods in L 1 , allowed by L p -norms propagation.
@article{AIHPC_2010__27_3_809_0,
     author = {Broizat, Damien},
     title = {A kinetic model for coagulation--fragmentation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {27},
     number = {3},
     year = {2010},
     pages = {809-836},
     doi = {10.1016/j.anihpc.2009.11.014},
     zbl = {1190.82050},
     mrnumber = {2629881},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2010__27_3_809_0}
}
Broizat, Damien. A kinetic model for coagulation–fragmentation. Annales de l'I.H.P. Analyse non linéaire, Volume 27 (2010) no. 3, pp. 809-836. doi : 10.1016/j.anihpc.2009.11.014. http://www.numdam.org/item/AIHPC_2010__27_3_809_0/

[1] D.J. Aldous, Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists, Bernoulli 5 no. 1 (1999), 3-48 | MR 1673235 | Zbl 0930.60096

[2] H. Amann, C. Walker, Local and global strong solutions to continuous coagulation–fragmentation equations with diffusion, J. Differential Equations 218 no. 1 (2005), 159-186 | MR 2174971 | Zbl 1082.35083

[3] R.J. Diperna, P.L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math. 130 (1989), 321-366 | MR 1014927 | Zbl 0698.45010

[4] R.J. Diperna, P.L. Lions, Y. Meyer, L p regularity of velocity averages, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 271-287 | Numdam | MR 1127927 | Zbl 0763.35014

[5] P.B. Dubovski, I.W. Stewart, Existence, uniqueness and mass conservation for the coagulation–fragmentation equation., Math. Methods Appl. Sci. 19 no. 7 (1996), 571-591 | MR 1385155 | Zbl 0852.45016

[6] P.B. Dubovski, Solubility of the transport equation in the kinetics of coagulation and fragmentation., Izv. Math. 65 no. 1 (2001), 1-22 | MR 1829401

[7] M. Escobedo, P. Laurençot, S. Mischler, On a kinetic equation for coalescing particles, Comm. Math. Phys. 246 no. 2 (2004), 237-267 | MR 2048557 | Zbl 1126.82036

[8] M. Escobedo, S. Mischler, M. Rodriguez-Ricard, On self-similarity and stationary problem for fragmentation and coagulation models., Ann. Inst. H. Poincaré Anal. Non Linéaire 22 no. 1 (2005), 99-125 | Numdam | MR 2114413 | Zbl 1130.35025

[9] N. Fournier, P. Laurençot, Existence of self-similar solutions to Smoluchowski's coagulation equation., Comm. Math. Phys. 256 no. 3 (2005), 589-609 | MR 2161272 | Zbl 1084.82006

[10] P. Gérard, Solutions globales du problème de Cauchy pour l'équation de Boltzmann, Séminaire Bourbaki 699 (1987–1988), 257-281 | Numdam | MR 992213

[11] P.E. Jabin, J. Soler, A kinetic description of particle fragmentation, Math. Models Methods Appl. Sci. 16 no. 6 (2006), 933-948 | MR 2232077 | Zbl 1136.76044

[12] P.E. Jabin, C. Klingenberg, Existence to solutions of a kinetic aerosol model, Nonlinear Partial Differential Equations and Related Analysis, Contemp. Math. vol. 371, Amer. Math. Soc., Providence, RI (2005), 181-192 | MR 2143866 | Zbl 1083.35057

[13] W. Lamb, Existence and uniqueness results for the continuous coagulation and fragmentation equation, Math. Methods Appl. Sci. 27 no. 6 (2004), 703-721 | MR 2070223 | Zbl 1049.35004

[14] P. Laurençot, Self-similar solutions to a coagulation equation with multiplicative kernel, Phys. D 222 no. 1–2 (2006), 80-87 | MR 2265770 | Zbl 1140.82034

[15] P. Laurençot, S. Mischler, Global existence for the discrete diffusive coagulation–fragmentation equations in L 1 , Rev. Mat. Iberoamericana 18 no. 3 (2002), 731-745 | MR 1954870 | Zbl 1036.35089

[16] P. Laurençot, S. Mischler, From the discrete to the continuous coagulation–fragmentation equations, Proc. Roy. Soc. Edinburgh. Sect. A 132 no. 5 (2002), 1219-1248 | MR 1938720 | Zbl 1034.35011

[17] P. Laurençot, S. Mischler, The continuous coagulation–fragmentation equations with diffusion, Arch. Rational. Mech. Anal. 162 (2002), 45-99 | MR 1892231 | Zbl 0997.45005

[18] P. Laurençot, S. Mischler, Convergence to equilibrium for the continuous coagulation–fragmentation equation., Bull. Sci. Math. 127 no. 3 (2003), 179-190 | MR 1988654 | Zbl 1027.82030

[19] S. Mischler, M. Rodriguez-Ricard, Existence globale pour l'équation de Smoluchowski continue non homogène et comportement asymptotique des solutions, C. R. Math. Acad. Sci. Paris 336 no. 5 (2003), 407-412 | MR 1979355

[20] H. Müller, Zur allgemeinen Theorie der raschen Koagulation, Kolloidchemische Beihefte 27 (1928), 223-250

[21] M. Smoluchowski, Drei Vorträge über Diffusion. Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Physik Zeitschr. 17 (1916), 557-599

[22] M. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Zeitschrift f. physik. Chemie 92 (1917), 129-168

[23] I.W. Stewart, A global existence theorem for the general coagulation–fragmentation equation with unbounded kernels, Math. Methods Appl. Sci. 11 no. 5 (1989), 627-648 | MR 1011810 | Zbl 0683.45006

[24] I.W. Stewart, A uniqueness theorem for the coagulation–fragmentation equation, Math. Proc. Cambridge Philos. Soc. 107 no. 3 (1990), 573-578 | MR 1041486 | Zbl 0708.45010