La notion de solution entropique de Kruzhkov a été étendue par Alibaud en 2007 aux lois de conservation avec un terme diffusif fractionnaire ; ceci a permis de démontrer que le prolème de Cauchy est bien posé dans le cadre . Dans cet article, on montre que si l'ordre de l'opérateur de diffusion est strictement plus petit que un, alors il peut exister plusieurs solutions faibles ; on apporte ainsi une motivation supplémentaire à l'utilisation des solutions entropiques.
The notion of Kruzhkov entropy solution was extended by the first author in 2007 to conservation laws with a fractional Laplacian diffusion term; this notion led to well-posedness for the Cauchy problem in the -framework. In the present paper, we further motivate the introduction of entropy solutions, showing that in the case of fractional diffusion of order strictly less than one, uniqueness of a weak solution may fail.
Mots-clés : Fractional Laplacian, Non-local diffusion, Conservation law, Lévy–Khintchine's formula, Entropy solution, Admissibility of solutions, Oleĭnik's condition, Non-uniqueness of weak solutions
@article{AIHPC_2010__27_4_997_0, author = {Alibaud, Natha\"el and Andreianov, Boris}, title = {Non-uniqueness of weak solutions for the fractal {Burgers} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {997--1016}, publisher = {Elsevier}, volume = {27}, number = {4}, year = {2010}, doi = {10.1016/j.anihpc.2010.01.008}, mrnumber = {2659155}, zbl = {1201.35006}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2010.01.008/} }
TY - JOUR AU - Alibaud, Nathaël AU - Andreianov, Boris TI - Non-uniqueness of weak solutions for the fractal Burgers equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 997 EP - 1016 VL - 27 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2010.01.008/ DO - 10.1016/j.anihpc.2010.01.008 LA - en ID - AIHPC_2010__27_4_997_0 ER -
%0 Journal Article %A Alibaud, Nathaël %A Andreianov, Boris %T Non-uniqueness of weak solutions for the fractal Burgers equation %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 997-1016 %V 27 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2010.01.008/ %R 10.1016/j.anihpc.2010.01.008 %G en %F AIHPC_2010__27_4_997_0
Alibaud, Nathaël; Andreianov, Boris. Non-uniqueness of weak solutions for the fractal Burgers equation. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 4, pp. 997-1016. doi : 10.1016/j.anihpc.2010.01.008. http://archive.numdam.org/articles/10.1016/j.anihpc.2010.01.008/
[1] Entropy formulation for fractal conservation laws, Journal of Evolution Equations 7 no. 1 (2007), 145-175 | MR | Zbl
,[2] Occurrence and non-appearance of shocks in fractal Burgers equation, Journal of Hyperbolic Differential Equations 4 no. 3 (2007), 479-499 | MR | Zbl
, , ,[3] Fractional semi-linear parabolic equations with unbounded data, Trans. Amer. Math. Soc. 361 (2009), 2527-2566 | MR | Zbl
, ,[4] N. Alibaud, C. Imbert, G. Karch, Asymptotic properties of entropy solutions to fractal Burgers equation, SIAM Journal on Mathematical Analysis, in press | MR
[5] Fractal Burgers equations, J. Differential Equations 148 (1998), 9-46 | MR | Zbl
, , ,[6] Asymptotics for multifractal conservation laws, Studia Math. 135 (1999), 231-252 | EuDML | MR | Zbl
, , ,[7] Asymptotics for conservation laws involving Lévy diffusion generators, Studia Math. 148 (2001), 171-192 | EuDML | MR | Zbl
, , ,[8] Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), 613-637 | EuDML | Numdam | MR | Zbl
, , ,[9] Semi-groupe de Feller sur une variété à bord compacte et prblèmes aux limites intégro-différentiels du second-ordre donnant lieu au principe du maximum, Ann. Inst. Fourier 18 no. 2 (1968), 396-521 | EuDML | Numdam | MR | Zbl
, , ,[10] S. Cifani, E.R. Jakobsen, K.H. Karlsen, The discontinuous Galerkin method for fractal conservation laws, 2009, submitted for publication | MR
[11] Regularity of solutions for the critical N-dimensional Burgers' equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 no. 2 (2010), 471-501 | Numdam | MR | Zbl
, ,[12] C.H. Chan, M. Czubak, L. Silvestre, Eventual regularization of the slightly supercritical fractional Burgers equation, 2009, submitted for publication | MR
[13] Instabilities and nonlinear patterns of overdriven detonations in gases, , (ed.), Nonlinear PDE's in Condensed Matter and Reactive Flows, Kluwer (2002), 49-97 | Zbl
,[14] The Theory of Max Min, Springer, Berlin (1967)
,[15] Finite time singularities and global well-posedness for fractal Burgers equations, Indiana Univ. Math. J. 58 no. 2 (2009), 807-822 | MR | Zbl
, , ,[16] A numerical method for fractal conservation laws, Math. Comp. 79 (2010), 71-94 | MR
,[17] Global solution and smoothing effect for a non-local regularization of an hyperbolic equation, Journal of Evolution Equations 3 no. 3 (2003), 499-521 | MR | Zbl
, , ,[18] Fractal first order partial differential equations, Arch. Ration. Mech. Anal. 182 no. 2 (2006), 299-331 | MR | Zbl
, ,[19] Pseudo differential operators with negative definite symbols and the martingale problem, Stochastics 55 no. 3–4 (1995), 225-252 | MR | Zbl
,[20] A probabilistic approach for nonlinear equations involving the fractional Laplacian and singular operator, Potential Analysis 23 (2005), 55-81 | MR | Zbl
, , ,[21] Probabilistic approximation and inviscid limits for one-dimensional fractional conservation laws, Bernoulli 11 (2005), 689-714 | MR | Zbl
, , ,[22] On convergence of solutions of fractal Burgers equation toward rarefaction waves, SIAM J. Math. Anal. 39 (2008), 1536-1549 | MR | Zbl
, , ,[23] K.H. Karlsen, S. Ulusoy, Stability of entropy solutions for Lévy mixed hyperbolic parabolic equations, 2009, submitted for publication | MR
[24] Blow up and regularity for fractal Burgers equation, Dynamics of Partial Differential Equations 5 no. 3 (2008), 211-240 | MR | Zbl
, , ,[25] First order quasilinear equations with several independent variables, Math. Sb. (N.S.) 81 no. 123 (1970), 228-255 | MR | Zbl
,[26] Well-posedness of the Cauchy problem for fractional power dissipative equations, Nonlinear Anal. 68 (2008), 461-484 | MR | Zbl
, , ,[27] Global well-posedness of the critical Burgers equation in critical Besov spaces, J. Differential Equations 247 no. 6 (2009), 1673-1693 | MR | Zbl
, ,[28] Discontinuous solutions of non-linear differential equations, Uspekhi Mat. Nauk 12 no. 3 (1957), Russian Mathematical Surveys 3 (1957) | MR | Zbl
,[29] Lévy processes in the physical sciences, Lévy Processes, Birkhäuser Boston, Boston, MA (2001), 241-266 | MR | Zbl
,Cité par Sources :