We continue the study of Ambrosio and Serfaty (2008) [4] on the Chapman–Rubinstein–Schatzman–E evolution model for superconductivity, viewed as a gradient flow on the space of measures equipped with the quadratic Wasserstein structure. In Ambrosio and Serfaty (2008) [4] we considered the case of positive (probability) measures, while here we consider general real measures, as in the physical model. Understanding the evolution as a gradient flow in this context gives rise to several new questions, in particular how to define a “Wasserstein” distance for signed measures. We generalize the minimizing movement scheme of Ambrosio et al. (2005) [3] in this context, we show the entropy argument of Ambrosio and Serfaty (2008) [4] still carries through, and derive an evolution equation for the measure which contains an error term compared to the Chapman–Rubinstein–Schatzman–E model. Moreover, we also show the same applies to a very similar dissipative model on the whole plane.
@article{AIHPC_2011__28_2_217_0, author = {Ambrosio, Luigi and Mainini, Edoardo and Serfaty, Sylvia}, title = {Gradient flow of the {Chapman{\textendash}Rubinstein{\textendash}Schatzman} model for signed vortices}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {217--246}, publisher = {Elsevier}, volume = {28}, number = {2}, year = {2011}, doi = {10.1016/j.anihpc.2010.11.006}, mrnumber = {2784070}, zbl = {1233.49022}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2010.11.006/} }
TY - JOUR AU - Ambrosio, Luigi AU - Mainini, Edoardo AU - Serfaty, Sylvia TI - Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices JO - Annales de l'I.H.P. Analyse non linéaire PY - 2011 SP - 217 EP - 246 VL - 28 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2010.11.006/ DO - 10.1016/j.anihpc.2010.11.006 LA - en ID - AIHPC_2011__28_2_217_0 ER -
%0 Journal Article %A Ambrosio, Luigi %A Mainini, Edoardo %A Serfaty, Sylvia %T Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices %J Annales de l'I.H.P. Analyse non linéaire %D 2011 %P 217-246 %V 28 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2010.11.006/ %R 10.1016/j.anihpc.2010.11.006 %G en %F AIHPC_2011__28_2_217_0
Ambrosio, Luigi; Mainini, Edoardo; Serfaty, Sylvia. Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 2, pp. 217-246. doi : 10.1016/j.anihpc.2010.11.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2010.11.006/
[1] Curvature-driven flows: a variational approach, SIAM J. Control Optim. 31 no. 2 (1993), 387-438 | MR | Zbl
, , ,[2] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, Clarendon Press, Oxford University Press, New York (2000) | MR | Zbl
, , ,[3] Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (2005) | MR | Zbl
, , ,[4] A gradient flow approach to an evolution problem arising in superconductivity, Comm. Pure Appl. Math. 61 no. 11 (2008), 1495-1539 | MR | Zbl
, ,[5] A remark on the Cauchy problem for the 2D Gross–Pitaevskii equation with nonzero degree at infinity, Differential Integral Equations 20 no. 3 (2007), 325-338 | MR | Zbl
, ,[6] A mean-field model for superconducting vortices, Eur. J. Appl. Math. 7 no. 2 (1996), 97-111 | MR | Zbl
, , ,[7] Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc. 4 no. 3 (1991), 553-586 | MR
,[8] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), 511-547 | EuDML | MR | Zbl
, ,[9] Existence of weak solutions to some vortex density models, SIAM J. Math. Anal. 34 (2003), 1279-1299 | MR | Zbl
, ,[10] Dynamics of vortex-liquids in Ginzburg–Landau theories with applications to superconductivity, Phys. Rev. B 50 no. 3 (1994), 1126-1135 | MR
,[11] The variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal. 29 (1998), 1-17 | MR | Zbl
, , ,[12] On the hydrodynamic limit of Ginzburg–Landau vortices, Discrete Cont. Dyn. Systems 6 (2000), 121-142 | MR | Zbl
, ,[13] A global uniqueness result for an evolution problem arising in superconductivity, Boll. Unione Mat. Ital. (9) II no. 2 (2009), 509-528 | MR | Zbl
,[14] E. Mainini, A description of transport cost for signed measures, preprint, 2010. | MR
[15] A convexity principle for interacting gases, Adv. Math. 128 (1997), 153-179 | MR | Zbl
,[16] Global solutions to vortex density equations arising from sup-conductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 no. 4 (2005), 441-458 | EuDML | Numdam | MR | Zbl
, ,[17] The geometry of dissipative evolution equations: the porous-medium equation, Comm. Partial Differential Equations 26 (2001), 101-174 | MR | Zbl
,[18] The energy of Ginzburg–Landau vortices, Eur. J. Appl. Math. 13 (2002), 153-178 | MR | Zbl
, ,[19] A rigorous derivation of a free-boundary problem arising in superconductivity, Ann. Sci. Ec. Norm. Super. (4) 33 (2000), 561-592 | EuDML | MR | Zbl
, ,[20] Limiting vorticities for the Ginzburg–Landau equations, Duke Math. J. 117 (2003), 403-446 | MR | Zbl
, ,[21] Topics in Optimal Transportation, Graduate Studies in Mathematics vol. 58, American Mathematical Society, Providence, RI (2003) | MR | Zbl
,[22] Optimal Transport, Old and New, Springer-Verlag (2008) | MR | Zbl
,Cité par Sources :