Minimizing L -norm functional on divergence-free fields
Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 3, pp. 325-355.

In this paper, we study the minimization problem on the L -norm functional over the divergence-free fields with given boundary normal component. We focus on the computation of the minimum value and the classification of certain special minimizers including the so-called absolute minimizers. In particular, several alternative approaches for computing the minimum value are given using L q -approximations and the sets of finite perimeter. For problems in two dimensions, we establish the existence of absolute minimizers using a similar technique for the absolute minimizers of L -functionals of gradient fields. In some special cases, precise characterizations of all minimizers and the absolute minimizers are also given based on equivalent descriptions of the absolutely minimizing Lipschitz extensions of boundary functions.

DOI : 10.1016/j.anihpc.2011.02.004
Classification : 49J45, 49K30, 26B30, 35J92
Mots clés : $ {L}^{\infty }$-norm functional, Divergence-free field, BV function, Power-law approximation, 1-Laplacian-type equation, Absolute minimizer
@article{AIHPC_2011__28_3_325_0,
     author = {Yan, Baisheng},
     title = {Minimizing ${L}^{\infty }$-norm functional on divergence-free fields},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {325--355},
     publisher = {Elsevier},
     volume = {28},
     number = {3},
     year = {2011},
     doi = {10.1016/j.anihpc.2011.02.004},
     mrnumber = {2795710},
     zbl = {1233.49010},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2011.02.004/}
}
TY  - JOUR
AU  - Yan, Baisheng
TI  - Minimizing ${L}^{\infty }$-norm functional on divergence-free fields
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2011
SP  - 325
EP  - 355
VL  - 28
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2011.02.004/
DO  - 10.1016/j.anihpc.2011.02.004
LA  - en
ID  - AIHPC_2011__28_3_325_0
ER  - 
%0 Journal Article
%A Yan, Baisheng
%T Minimizing ${L}^{\infty }$-norm functional on divergence-free fields
%J Annales de l'I.H.P. Analyse non linéaire
%D 2011
%P 325-355
%V 28
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2011.02.004/
%R 10.1016/j.anihpc.2011.02.004
%G en
%F AIHPC_2011__28_3_325_0
Yan, Baisheng. Minimizing ${L}^{\infty }$-norm functional on divergence-free fields. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 3, pp. 325-355. doi : 10.1016/j.anihpc.2011.02.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2011.02.004/

[1] R.A. Adams, J. Fournier, Sobolev Spaces, Academic Press, New York (2003) | MR | Zbl

[2] F. Alter, V. Caselles, Uniqueness of the Cheeger set of a convex body, Nonlinear Anal. 70 (2009), 32-44 | MR | Zbl

[3] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, Clarendon Press, Oxford University Press, New York (2000) | MR | Zbl

[4] F. Andreu, J.M. Mazón, J.D. Rossi, The best constant for the Sobolev trace embedding from W 1,1 (Ω) into L 1 (Ω), Nonlinear Anal. 59 (2004), 1125-1145 | MR | Zbl

[5] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. 135 no. 4 (1983), 293-318 | MR | Zbl

[6] G. Aronsson, M. Crandall, P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. 41 no. 4 (2004), 439-505 | MR | Zbl

[7] E. Barron, R. Jensen, C. Wang, The Euler equation and absolute minimizers of L functionals, Arch. Rational Mech. Anal. 157 (2001), 255-283 | MR | Zbl

[8] G. Bellettini, V. Caselles, M. Novaga, Explicit solutions of the eigenvalue problem - div (Du |Du|)=u in 𝐑 2 , SIAM J. Math. Anal. 36 no. 4 (2005), 1095-1129 | MR | Zbl

[9] M. Bocea, V. Nesi, Γ-convergence of power-law functionals, variational principles in L , and applications, SIAM J. Math. Anal. 39 no. 5 (2008), 1550-1576 | MR | Zbl

[10] J. Bourgain, H. Brezis, On the equation div Y=f and application to control of phases, J. Amer. Math. Soc. 16 no. 2 (2002), 393-426 | MR | Zbl

[11] G. Chen, M. Torres, W. Ziemer, Gauss–Green Theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws, Comm. Pure Appl. Math. LXII (2009), 0242-0304 | MR

[12] F. Demengel, Compactness theorems for spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity, Arch. Rational Mech. Anal. 105 no. 2 (1989), 123-161 | MR | Zbl

[13] F. Demengel, One some nonlinear equation involving the 1-Laplacian and trace map inequalities, Nonlinear Anal. 48 (2002), 1151-1163 | MR | Zbl

[14] L.C. Evans, Partial Differential Equations, Amer. Math. Soc., Providence (1998) | MR

[15] I. Fonseca, S. Müller, 𝒜-quasiconvexity, lower semicontinuity and Young measures, SIAM J. Math. Anal. 30 (1999), 1355-1390 | MR | Zbl

[16] M. Giaquinta, G. Modica, J. Soucek, Cartesian Currents in the Calculus of Variations I, Springer, Berlin (1998) | MR | Zbl

[17] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston (1984) | MR | Zbl

[18] I. Ionescu, T. Lachand-Robert, Generalized Cheeger sets related to landslides, Calc. Var. 23 (2005), 227-249 | MR | Zbl

[19] R. Jensen, Uniqueness of Lipschitz extensions: Minimizing the sup-norm of the gradient, Arch. Rational Mech. Anal. 123 (1993), 51-74 | MR | Zbl

[20] B. Kawohl, V. Fridman, Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolin. 44 no. 4 (2003), 659-667 | EuDML | MR | Zbl

[21] J. Malý, D. Swanson, W. Ziemer, The co-area formula for Sobolev mappings, Trans. Amer. Math. Soc. 355 no. 2 (2002), 477-492 | MR | Zbl

[22] P. Pedregal, B. Yan, A duality method for micromagnetics, SIAM J. Math. Anal. 41 no. 6 (2010), 2431-2452 | MR | Zbl

[23] Y. Peres, O. Schramm, S. Sheffields, D. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. 22 no. 1 (2009), 167-210 | MR | Zbl

[24] N. Saintier, Estimates of the best Sobolev constant of the embedding of 𝐵𝑉(Ω) into L 1 (Ω) and related shape optimization problems, Nonlinear Anal. 69 (2008), 2479-2491 | MR | Zbl

Cité par Sources :