Nous considérons une famille dʼéquations de Benjamin–Ono à dispersion généralisée (dgBO)
We consider a family of dispersion generalized Benjamin–Ono equations (dgBO)
@article{AIHPC_2011__28_6_853_0, author = {Kenig, C.E. and Martel, Y. and Robbiano, L.}, title = {Local well-posedness and blow-up in the energy space for a class of $ {L}^{2}$ critical dispersion generalized Benjamin--Ono equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {853--887}, publisher = {Elsevier}, volume = {28}, number = {6}, year = {2011}, doi = {10.1016/j.anihpc.2011.06.005}, zbl = {1230.35102}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_2011__28_6_853_0/} }
Kenig, C.E.; Martel, Y.; Robbiano, L. Local well-posedness and blow-up in the energy space for a class of $ {L}^{2}$ critical dispersion generalized Benjamin–Ono equations. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 6, pp. 853-887. doi : 10.1016/j.anihpc.2011.06.005. http://archive.numdam.org/item/AIHPC_2011__28_6_853_0/
[1] Uniqueness and related analytic properties for the Benjamin–Ono equation—a nonlinear Neumann problem in the plane, Acta Math. 167 (1991), 107-126 | MR 1111746 | Zbl 0755.35108
, ,[2] Uniqueness of Benjaminʼs solitary-wave solution of the Benjamin–Ono equation, IMA J. Appl. Math. 46 (1991), 21-28 | MR 1106251 | Zbl 0735.35105
, ,[3] An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245-1260 | MR 2354493 | Zbl 1143.26002
, ,[4] Weak continuity of the flow map for the Benjamin–Ono equation on the line, J. Fourier Anal. Appl. 16 (2010), 1021-1052 | MR 2737768 | Zbl 1223.35272
, ,[5] Uniqueness and nondegeneracy of ground states for in , arXiv:1009.4042v1
, ,[6] Limit Distributions for Sums of Independent Random Variables, Addison–Wesley Publishing Company (1954) | MR 62975 | Zbl 0056.36001
, ,[7] Global weak attractor for weakly damped nonlinear Schrödinger equations in , Nonlinear Anal. 71 (2009), 317-320 | MR 2518038 | Zbl 1170.35534
, ,[8] Bounded Integral Operators on Spaces, Ergeb. Math. Grenzgeb. vol. 96, Springer-Verlag, Berlin (1978) | MR 517709 | Zbl 0389.47001
, ,[9] The Analysis of Linear Partial Differential Operators. III. Pseudodifferential Operators, Grundlehren Math. Wiss. vol. 274, Springer-Verlag, Berlin (1985) | MR 781536 | Zbl 0601.35001
,[10] On the Cauchy problem for the (generalized) Korteweg–de Vries equation, Studies in Applied Mathematics, Adv. Math. Suppl. Stud. vol. 8, Academic Press, New York (1983), 93-128 | MR 759907
,[11] Asymptotic stability of solitons for the Benjamin–Ono equation, Rev. Mat. Iberoam. 25 (2009), 909-970 | MR 2590690 | Zbl 1247.35133
, ,[12] Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 33-69 | MR 1101221 | Zbl 0738.35022
, , ,[13] Well-posedness of the initial value problem for the Korteweg–de Vries equation, J. Amer. Math. Soc. 4 (1991), 323-347 | MR 1086966 | Zbl 0737.35102
, , ,[14] Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), 527-620 | MR 1211741 | Zbl 0808.35128
, , ,[15] Global wellposedness of the modified Benjamin–Ono equation with initial data in , Int. Math. Res. Not. (2006) | MR 2219229 | Zbl 1140.35386
, ,[16] The concentration–compactness principle in the calculus of variations: the locally compact case. Parts 1 and 2, Ann. Inst. H. Poincaré Non Linéaire 1 (1984), 109-145 | EuDML 78069 | Numdam | MR 778970 | Zbl 0541.49009
,[17] Linear problems related to asymptotic stability of solitons of the generalized KdV equations, SIAM J. Math. Anal. 38 (2006), 759-781 | MR 2262941 | Zbl 1126.35055
,[18] Instability of solitons for the critical generalized Korteweg–de Vries equation, Geom. Funct. Anal. 11 (2001), 74-123 | MR 1829643 | Zbl 0985.35071
, ,[19] A Liouville theorem for the critical generalized Korteweg–de Vries equation, J. Math. Pures Appl. 79 (2000), 339-425 | MR 1753061 | Zbl 0963.37058
, ,[20] Stability of the blow up profile and lower bounds on the blow up rate for the critical generalized KdV equation, Ann. of Math. 155 (2002), 235-280 | MR 1888800 | Zbl 1005.35081
, ,[21] Blow up in finite time and dynamics of blow up solutions for the -critical generalized KdV equation, J. Amer. Math. Soc. 15 (2002), 617-664 | MR 1896235 | Zbl 0996.35064
, ,[22] Existence of blow-up solutions in the energy space for the critical generalized Korteweg–de Vries equation, J. Amer. Math. Soc. 14 (2001), 555-578 | MR 1824989 | Zbl 0970.35128
,[23] On universality of blow up profile for critical nonlinear Schrödinger equation, Invent. Math. 156 (2004), 565-672 | MR 2061329 | Zbl 1067.35110
, ,[24] Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation, J. Amer. Math. Soc. 19 (2006), 37-90 | MR 2169042 | Zbl 1075.35077
, ,[25] Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys. 253 (2005), 675-704 | MR 2116733 | Zbl 1062.35137
, ,[26] Well-posedness results for the generalized Benjamin–Ono equation with small initial data, J. Math. Pures Appl. 83 (2004), 277-311 | MR 2038121 | Zbl 1084.35094
, ,[27] Methods of Modern Mathematical Physics IV. Analysis of Operators, Academic Press, New York, San Francisco, London (1978) | MR 493421 | Zbl 0401.47001
, ,[28] Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567-576 | MR 691044 | Zbl 0527.35023
,[29] Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), 472-491 | MR 783974 | Zbl 0583.35028
,[30] Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math. 39 (1986), 51-68 | MR 820338 | Zbl 0594.35005
,[31] Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation, Comm. Partial Differential Equations 12 (1987), 1133-1173 | MR 886343 | Zbl 0657.73040
,[32] Solitary waves of nonlinear dispersive evolution equations with critical power nonlinearities, J. Differential Equations 69 (1987), 192-203 | MR 899159 | Zbl 0636.35015
,[33] Unimodality of infinitely divisible distribution functions of class L, Ann. Probab. 6 (1978), 523-531 | MR 482941 | Zbl 0394.60017
,