On montre une inégalité isopérimétrique du type Rayleigh–Faber–Krahn pour une généralisation non-linéaire de la première valeur propre de Dirichlet torsadée, définie par
We prove an isoperimetric inequality of the Rayleigh–Faber–Krahn type for a nonlinear generalization of the first twisted Dirichlet eigenvalue, defined by
@article{AIHPC_2012__29_1_21_0, author = {Croce, Gisella and Henrot, Antoine and Pisante, Giovanni}, title = {An isoperimetric inequality for a nonlinear eigenvalue problem}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {21--34}, publisher = {Elsevier}, volume = {29}, number = {1}, year = {2012}, doi = {10.1016/j.anihpc.2011.08.001}, mrnumber = {2876245}, zbl = {1243.49048}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2011.08.001/} }
TY - JOUR AU - Croce, Gisella AU - Henrot, Antoine AU - Pisante, Giovanni TI - An isoperimetric inequality for a nonlinear eigenvalue problem JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 21 EP - 34 VL - 29 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2011.08.001/ DO - 10.1016/j.anihpc.2011.08.001 LA - en ID - AIHPC_2012__29_1_21_0 ER -
%0 Journal Article %A Croce, Gisella %A Henrot, Antoine %A Pisante, Giovanni %T An isoperimetric inequality for a nonlinear eigenvalue problem %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 21-34 %V 29 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2011.08.001/ %R 10.1016/j.anihpc.2011.08.001 %G en %F AIHPC_2012__29_1_21_0
Croce, Gisella; Henrot, Antoine; Pisante, Giovanni. An isoperimetric inequality for a nonlinear eigenvalue problem. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 1, pp. 21-34. doi : 10.1016/j.anihpc.2011.08.001. https://www.numdam.org/articles/10.1016/j.anihpc.2011.08.001/
[1] Eigenvalue and “twisted” eigenvalue problems, applications to cmc surfaces, J. Math. Pures Appl. (9) 79 no. 5 (2000), 427-450 | MR | Zbl
, ,[2] A symmetry problem related to Wirtingerʼs and Poincaréʼs inequality, J. Differential Equations 156 no. 1 (1999), 211-218 | MR | Zbl
, ,[3] A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative, Rend. Circ. Mat. Palermo (2) 51 no. 3 (2002), 375-390 | MR | Zbl
, ,[4] On a family of extremal problems and related properties of an integral, Mat. Zametki (64) 51 no. 3 (1998), 830-838 | MR
, , ,[5] On a generalized Wirtinger inequality, Discrete Contin. Dyn. Syst. 9 no. 5 (2003), 1329-1341 | MR | Zbl
, ,[6] Sur une généralisation de lʼinégalité de Wirtinger, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 29-50 | EuDML | Numdam | MR | Zbl
, , ,[7] Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations, J. Differential Equations 206 no. 2 (2004), 483-515 | MR | Zbl
, ,[8] Generalized Pohozaev identity and a non-existence result for the p-laplacian: weak solutions, Adv. Differential Equations 14 no. 5–6 (2009), 497-540 | MR | Zbl
, ,[9] Monotonicity of the principal eigenvalue of the p-laplacian in an annulus, Proc. Amer. Math. Soc. 136 no. 5 (2008), 1725-1731 | MR | Zbl
, ,[10] Uniqueness theorems for positive radial solutions of quasilinear elliptic equations in a ball, J. Differential Equations 138 no. 2 (1997), 351-379 | MR | Zbl
, ,[11] Best constant and extremals for a vector Poincaré inequality with weights, Sci. Math. Jpn. 71 no. 2 (2010), 111-126 | MR | Zbl
, , ,
[12] Existence and uniqueness of nonnegative solutions of quasilinear equations in
[13] Existence and uniqueness for a p-laplacian nonlinear eigenvalue problem, Electron. J. Differential Equations 26 (2010) | EuDML | MR | Zbl
, ,[14] On the first twisted Dirichlet eigenvalue, Commun. Anal. Geom. 12 no. 5 (2004), 1083-1103 | MR | Zbl
, ,[15] The sharp quantitative isoperimetric inequality, Ann. of Math. (2) (2006) | MR | Zbl
, , ,[16] Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics, Birkhäuser Verlag, Basel (2006) | MR | Zbl
,[17] Variation et optimisation de formes. Une analyse géométrique, Mathématiques & Applications (Berlin) vol. 48, Springer, Berlin (2005) | MR
, ,[18] Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Mathematics vol. 1150, Springer-Verlag, Berlin (1985) | MR | Zbl
,[19] Symmetry results for functions yielding best constants in Sobolev-type inequalities, Discrete Contin. Dyn. Syst. 6 no. 3 (2000), 683-690 | MR | Zbl
,[20] Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolin. 44 no. 4 (2003), 659-667 | EuDML | MR | Zbl
, ,[21] Simplicity of the principal eigenvalue for indefinite quasilinear problems, Adv. Differential Equations 12 no. 4 (2007), 407-434 | MR | Zbl
, , ,[22] Linear and Quasilinear Elliptic Equations, Academic Press, New York (1968) | MR | Zbl
, ,[23] On the symmetry of extremals in the weight embedding theorem, J. Math. Sci. (New York) 107 no. 3 (2001), 3841-3859 | MR | Zbl
,[24] A general variational identity, Indiana Univ. Math. J. 35 no. 3 (1986), 681-703 | MR | Zbl
, ,[25] Differentiation with respect to the domain in boundary value problems, Numer. Funct. Anal. Optim. 2 no. 7–8 (1980), 649-687 | MR | Zbl
,- Remarks on the non-local eigenvalue problems for the p-Laplacian, Boundary Value Problems, Volume 2025 (2025) no. 1 | DOI:10.1186/s13661-025-02016-8
- On (p, q)-eigenvalues of the weighted p-Laplace operator in outward Hölder cuspidal domains, Revista Matemática Complutense (2024) | DOI:10.1007/s13163-024-00509-1
- On upper semicontinuity of the Allen–Cahn twisted eigenvalues, Asymptotic Analysis, Volume 130 (2022) no. 3-4, p. 323 | DOI:10.3233/asy-211753
- Sign-changing two-peak solutions for an elliptic free boundary problem related to confined plasmas, Advances in Nonlinear Analysis, Volume 7 (2018) no. 3, p. 385 | DOI:10.1515/anona-2016-0029
- A saturation phenomenon for a nonlinear nonlocal eigenvalue problem, Nonlinear Differential Equations and Applications NoDEA, Volume 23 (2016) no. 6 | DOI:10.1007/s00030-016-0416-8
- Corrigendum to “An isoperimetric inequality for a nonlinear eigenvalue problem” [Ann. I. H. Poincaré – AN 29 (1) (2012) 21–34], Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 32 (2015) no. 2, p. 485 | DOI:10.1016/j.anihpc.2014.04.006
- Symmetry breaking in a constrained Cheeger type isoperimetric inequality, ESAIM: Control, Optimisation and Calculus of Variations, Volume 21 (2015) no. 2, p. 359 | DOI:10.1051/cocv/2014016
- SHARP CONSTANTS IN THE POINCARÉ, STEKLOV AND RELATED INEQUALITIES (A SURVEY), Mathematika, Volume 61 (2015) no. 2, p. 328 | DOI:10.1112/s0025579314000229
- Superposition operators between Sobolev spaces and a non-existence result of higher-order regular solutions for thep-Laplacian, Nonlinear Analysis: Theory, Methods Applications, Volume 117 (2015), p. 87 | DOI:10.1016/j.na.2015.01.001
Cité par 9 documents. Sources : Crossref