On montre une inégalité isopérimétrique du type Rayleigh–Faber–Krahn pour une généralisation non-linéaire de la première valeur propre de Dirichlet torsadée, définie par
We prove an isoperimetric inequality of the Rayleigh–Faber–Krahn type for a nonlinear generalization of the first twisted Dirichlet eigenvalue, defined by
Mots clés : Shape optimization, Eigenvalues, Symmetrization, Euler equation, Shape derivative
@article{AIHPC_2012__29_1_21_0, author = {Croce, Gisella and Henrot, Antoine and Pisante, Giovanni}, title = {An isoperimetric inequality for a nonlinear eigenvalue problem}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {21--34}, publisher = {Elsevier}, volume = {29}, number = {1}, year = {2012}, doi = {10.1016/j.anihpc.2011.08.001}, zbl = {1243.49048}, mrnumber = {2876245}, language = {en}, url = {archive.numdam.org/item/AIHPC_2012__29_1_21_0/} }
Croce, Gisella; Henrot, Antoine; Pisante, Giovanni. An isoperimetric inequality for a nonlinear eigenvalue problem. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 1, pp. 21-34. doi : 10.1016/j.anihpc.2011.08.001. http://archive.numdam.org/item/AIHPC_2012__29_1_21_0/
[1] Eigenvalue and “twisted” eigenvalue problems, applications to cmc surfaces, J. Math. Pures Appl. (9) 79 no. 5 (2000), 427-450 | MR 1759435 | Zbl 0958.58006
, ,[2] A symmetry problem related to Wirtingerʼs and Poincaréʼs inequality, J. Differential Equations 156 no. 1 (1999), 211-218 | MR 1701790 | Zbl 0954.26005
, ,[3] A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative, Rend. Circ. Mat. Palermo (2) 51 no. 3 (2002), 375-390 | MR 1947461 | Zbl 1194.35282
, ,[4] On a family of extremal problems and related properties of an integral, Mat. Zametki (64) 51 no. 3 (1998), 830-838 | MR 1691263
, , ,[5] On a generalized Wirtinger inequality, Discrete Contin. Dyn. Syst. 9 no. 5 (2003), 1329-1341 | MR 1974431 | Zbl 1055.49033
, ,[6] Sur une généralisation de lʼinégalité de Wirtinger, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 29-50 | EuDML 78270 | Numdam | MR 1151466 | Zbl 0764.49009
, , ,[7] Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations, J. Differential Equations 206 no. 2 (2004), 483-515 | MR 2096703 | Zbl 1108.35069
, ,[8] Generalized Pohozaev identity and a non-existence result for the p-laplacian: weak solutions, Adv. Differential Equations 14 no. 5–6 (2009), 497-540 | MR 2502703 | Zbl 1179.35132
, ,[9] Monotonicity of the principal eigenvalue of the p-laplacian in an annulus, Proc. Amer. Math. Soc. 136 no. 5 (2008), 1725-1731 | MR 2373602 | Zbl 1148.35060
, ,[10] Uniqueness theorems for positive radial solutions of quasilinear elliptic equations in a ball, J. Differential Equations 138 no. 2 (1997), 351-379 | MR 1462272 | Zbl 0884.34025
, ,[11] Best constant and extremals for a vector Poincaré inequality with weights, Sci. Math. Jpn. 71 no. 2 (2010), 111-126 | MR 2640468 | Zbl 1188.26013
, , ,[12] Existence and uniqueness of nonnegative solutions of quasilinear equations in , Adv. Math. 118 no. 2 (1996), 177-243 | MR 1378680 | Zbl 0853.35035
, , ,[13] Existence and uniqueness for a p-laplacian nonlinear eigenvalue problem, Electron. J. Differential Equations 26 (2010) | EuDML 230413 | MR 2602859 | Zbl 1188.35125
, ,[14] On the first twisted Dirichlet eigenvalue, Commun. Anal. Geom. 12 no. 5 (2004), 1083-1103 | MR 2103312 | Zbl 1110.58003
, ,[15] The sharp quantitative isoperimetric inequality, Ann. of Math. (2) (2006) | MR 2456887 | Zbl 1121.46029
, , ,[16] Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics, Birkhäuser Verlag, Basel (2006) | MR 2251558 | Zbl 1109.35081
,[17] Variation et optimisation de formes. Une analyse géométrique, Mathématiques & Applications (Berlin) vol. 48, Springer, Berlin (2005) | MR 2512810
, ,[18] Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Mathematics vol. 1150, Springer-Verlag, Berlin (1985) | MR 810619 | Zbl 0593.35002
,[19] Symmetry results for functions yielding best constants in Sobolev-type inequalities, Discrete Contin. Dyn. Syst. 6 no. 3 (2000), 683-690 | MR 1757396 | Zbl 1157.35342
,[20] Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolin. 44 no. 4 (2003), 659-667 | EuDML 249207 | MR 2062882 | Zbl 1105.35029
, ,[21] Simplicity of the principal eigenvalue for indefinite quasilinear problems, Adv. Differential Equations 12 no. 4 (2007), 407-434 | MR 2305874 | Zbl 1158.35069
, , ,[22] Linear and Quasilinear Elliptic Equations, Academic Press, New York (1968) | MR 244627 | Zbl 0164.13002
, ,[23] On the symmetry of extremals in the weight embedding theorem, J. Math. Sci. (New York) 107 no. 3 (2001), 3841-3859 | MR 1887840 | Zbl 1049.49002
,[24] A general variational identity, Indiana Univ. Math. J. 35 no. 3 (1986), 681-703 | MR 855181 | Zbl 0625.35027
, ,[25] Differentiation with respect to the domain in boundary value problems, Numer. Funct. Anal. Optim. 2 no. 7–8 (1980), 649-687 | MR 619172 | Zbl 0471.35077
,