Dans cet article nous montrons lʼexistence dʼune infinité de solutions qui changent de signe pour le système dʼéquations de Schrödinger avec des interactions compétitives
In this paper we prove the existence of infinitely many sign-changing solutions for the system of m Schrödinger equations with competition interactions
Mots clés : Elliptic systems, Optimal partition problems, Sign-changing solutions, Minimax methods
@article{AIHPC_2012__29_2_279_0, author = {Tavares, Hugo and Terracini, Susanna}, title = {Sign-changing solutions of competition--diffusion elliptic systems and optimal partition problems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {279--300}, publisher = {Elsevier}, volume = {29}, number = {2}, year = {2012}, doi = {10.1016/j.anihpc.2011.10.006}, zbl = {1241.35046}, mrnumber = {2901198}, language = {en}, url = {archive.numdam.org/item/AIHPC_2012__29_2_279_0/} }
Tavares, Hugo; Terracini, Susanna. Sign-changing solutions of competition–diffusion elliptic systems and optimal partition problems. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 2, pp. 279-300. doi : 10.1016/j.anihpc.2011.10.006. http://archive.numdam.org/item/AIHPC_2012__29_2_279_0/
[1] A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations 37 (2010), 345-361 | MR 2592975 | Zbl 1189.35074
, , ,[2] Sign changing solutions of superlinear Schrödinger equations, Comm. Partial Differential Equations 29 (2004), 25-42 | MR 2038142 | Zbl 1140.35410
, , ,[3] Optimal partitions for eingenvalues, J. Sci. Comp. 6 (2009), 4100-4114 | MR 2566585 | Zbl 1207.49050
, , ,[4] Existence results for some optimal partition problems, Adv. Math. Sci. Appl. 8 (1998), 571-579 | MR 1657219 | Zbl 0915.49006
, , ,[5] Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, J. Amer. Math. Soc. 21 (2008), 847-862 | MR 2393430 | Zbl 1194.35138
, ,[6] An optimal partition problem for eigenvalues, J. Sci. Comp. 31 (2007), 5-18 | MR 2304268 | Zbl 1123.65060
, ,[7] Segregated nodal domains of two-dimensional multispecies Bose–Einstein condensates, Phys. D 196 (2004), 341-361 | MR 2090357 | Zbl 1098.82602
, , , ,[8] On a new index theory and non semi-trivial solutions for elliptic systems, Discrete Contin. Dyn. Syst. 28 (2010), 809-826 | MR 2644766 | Zbl 1193.35036
, , ,[9] On a class of optimal partition problems related to the Fucik spectrum and to the monotonicity formula, Calc. Var. Partial Differential Equations 22 (2005), 45-72 | MR 2105968 | Zbl 1132.35365
, , ,[10] Remarks on variational methods and lower-upper solutions, NoDEA Nonlinear Differential Equations Appl. 6 (1999), 371-393 | MR 1736543 | Zbl 0941.35031
, , ,[11] A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 953-969 | Numdam | Zbl 1191.35121
, , ,[12] A. Domingos, M. Ramos, Existence and bounds for nonlinear Schrödinger systems with strong competition, preprint, 2011.
[13] Borsuk–Ulam type theorems on product spaces I, Bull. Polish Acad. Sci. Math. 48 (2000), 379-386 | Zbl 0968.55001
, , ,[14] Borsuk–Ulam type theorems on product spaces II, Topol. Methods Nonlinear Anal. 14 (1999), 345-352 | Zbl 0961.47032
, , ,[15] Nodal domains and spectral minimal partitions, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 101-138 | EuDML 78831 | Numdam | Zbl 1171.35083
, , ,[16] A Bahri–Lions theorem revisited, Adv. Math. 222 (2009), 2173-2195 | Zbl 1182.35118
, , ,[17] Existence and bounds of positive solutions for a nonlinear Schrödinger system, Proc. Amer. Math. Soc. 138 (2010), 1681-1692 | Zbl 1189.35086
, ,[18] B. Noris, H. Tavares, S. Terracini, G. Verzini, Convergence of minimax and continuation of critical points for singularly perturbed systems, J. Eur. Math. Soc., in press.
[19] Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math. 63 (2010), 267-302 | Zbl 1189.35314
, , , ,[20] Regularity of the nodal set of segregated critical configurations, arXiv:1002.3822 (2010)
, ,[21] Asymptotic behaviour of solutions of planar elliptic systems with strong competition, Nonlinearity 21 (2008), 305-317 | Zbl 1132.35482
, ,[22] The Borsuk–Ulam theorem on product space, (ed.), Fixed Point Theory and Applications, World Sci. Publ., River Edge, NJ (1992), 362-372
,