Compactness of immersions with local Lipschitz representation
Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 4, p. 545-572
We consider immersions admitting uniform representations as a λ-Lipschitz graph. In codimension 1, we show compactness for such immersions for arbitrary fixed λ< and uniformly bounded volume. The same result is shown in arbitrary codimension for λ1 4.
@article{AIHPC_2012__29_4_545_0,
     author = {Breuning, Patrick},
     title = {Compactness of immersions with local Lipschitz representation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {29},
     number = {4},
     year = {2012},
     pages = {545-572},
     doi = {10.1016/j.anihpc.2012.02.001},
     zbl = {1254.53010},
     mrnumber = {2948288},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2012__29_4_545_0}
}
Breuning, Patrick. Compactness of immersions with local Lipschitz representation. Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 4, pp. 545-572. doi : 10.1016/j.anihpc.2012.02.001. http://www.numdam.org/item/AIHPC_2012__29_4_545_0/

[1] H.W. Alt, Lineare Funktionalanalysis, Springer, Berlin, Heidelberg (2002)

[2] A.A. Borisenko, Yu.A. Nikolaevskii, Grassmann manifolds and the Grassmann image of submanifolds, Russian Math. Surveys 46 no. 2 (1991), 45-95 | MR 1125272 | Zbl 0742.53017

[3] P. Breuning, Immersions with local Lipschitz representation, dissertation, Freiburg, 2011.

[4] P. Breuning, Immersions with bounded second fundamental form, arXiv:1201.4562v1 (2011) | MR 3319975

[5] T. Bröcker, K. Jänich, Introduction to Differential Topology, Cambridge University Press, New York (1982) | MR 674117

[6] K. Corlette, Immersions with bounded curvature, Geom. Dedicata 33 (1990), 153-161 | MR 1050607 | Zbl 0717.53035

[7] S. Delladio, On hypersurfaces in R n+1 with integral bounds on curvature, J. Geom. Anal. 11 (2000), 17-41 | MR 1829346

[8] D. Gromoll, W. Klingenberg, W. Meyer, Riemannsche Geometrie im Großen, Lecture Notes in Math. vol. 55, Springer, Berlin, Heidelberg, New York (1968) | MR 229177 | Zbl 0155.30701

[9] K. Grove, H. Karcher, How to conjugate C 1 -close group actions, Math. Z. 132 (1973), 11-20 | MR 356104 | Zbl 0245.57016

[10] M.W. Hirsch, Differential Topology, Grad. Texts in Math. vol. 33, Springer, New York (1976) | MR 448362 | Zbl 0121.18004

[11] J. Jost, Riemannian Geometry and Geometric Analysis, Springer, Berlin, Heidelberg (2002) | MR 1871261 | Zbl 1034.53001

[12] J. Jost, Y.L. Xin, Bernstein type theorems for higher codimension, Calc. Var. Partial Differential Equations 9 no. 4 (1999), 277-296 | MR 1731468 | Zbl 0960.53035

[13] H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math. 30 (1977), 509-541 | MR 442975 | Zbl 0354.57005

[14] J. Langer, A compactness theorem for surfaces with L p -bounded second fundamental form, Math. Ann. 270 (1985), 223-234 | MR 771980 | Zbl 0564.58010

[15] J.M. Lee, Introduction to Smooth Manifolds, Grad. Texts in Math. vol. 218, Springer, New York (2003) | MR 1930091

[16] K. Leichtweiss, Zur Riemannschen Geometrie in Grassmannschen Mannigfaltigkeiten, Math. Z. 76 (1961), 334-366 | MR 126808 | Zbl 0113.37102

[17] Y.-C. Wong, Sectional curvatures of Grassmann manifolds, Proc. Natl. Acad. Sci. USA 60 (1968), 75-79 | MR 229173 | Zbl 0169.23904