We consider the evolution of fronts by mean curvature in the presence of obstacles. We construct a weak solution to the flow by means of a variational method, corresponding to an implicit time-discretization scheme. Assuming the regularity of the obstacles, in the two-dimensional case we show existence and uniqueness of a regular solution before the onset of singularities. Finally, we discuss an application of this result to the positive mean curvature flow.
Mots-clés : Obstacle problem, Mean curvature flow, Minimizing movements
@article{AIHPC_2012__29_5_667_0, author = {Almeida, L. and Chambolle, A. and Novaga, M.}, title = {Mean curvature flow with obstacles}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {667--681}, publisher = {Elsevier}, volume = {29}, number = {5}, year = {2012}, doi = {10.1016/j.anihpc.2012.03.002}, mrnumber = {2971026}, zbl = {1252.49072}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2012.03.002/} }
TY - JOUR AU - Almeida, L. AU - Chambolle, A. AU - Novaga, M. TI - Mean curvature flow with obstacles JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 667 EP - 681 VL - 29 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2012.03.002/ DO - 10.1016/j.anihpc.2012.03.002 LA - en ID - AIHPC_2012__29_5_667_0 ER -
%0 Journal Article %A Almeida, L. %A Chambolle, A. %A Novaga, M. %T Mean curvature flow with obstacles %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 667-681 %V 29 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2012.03.002/ %R 10.1016/j.anihpc.2012.03.002 %G en %F AIHPC_2012__29_5_667_0
Almeida, L.; Chambolle, A.; Novaga, M. Mean curvature flow with obstacles. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 5, pp. 667-681. doi : 10.1016/j.anihpc.2012.03.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2012.03.002/
[1] Tissue repair modeling, Singularities in Nonlinear Evolution Phenomena and Applications, CRM Series vol. 9 (2009) | MR | Zbl
, , , , ,[2] A mathematical model for dorsal closure, J. Theoret. Biol. 268 no. 1 (2011), 105-119
, , , , ,[3] L. Almeida, P. Bagnerini, A. Habbal, Modeling actin cable contraction, preprint, 2011; Comput. Math. Appl. (March 2012), http://dx.doi.org/10.1016/j.camwa.2012.02.041, in press. | MR
[4] L. Almeida, J. Demongeot, Predictive power of “a minima” models in biology, preprint, 2011; Acta Biotheor. (9 February 2012), pp. 1–17, http://dx.doi.org/10.1007/s10441-012-9146-4, in press.
[5] Curvature-driven flows: a variational approach, SIAM J. Control Optim. 31 no. 2 (1993), 387-438 | MR | Zbl
, , ,[6] Movimenti minimizzanti, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 19 (1995), 191-246 | MR
,[7] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., The Clarendon Press/Oxford University Press, New York (2000) | MR | Zbl
, , ,[8] Homogenization of fronts in highly heterogeneous media, SIAM J. Math. Anal. 43 no. 1 (2011), 212-227 | MR | Zbl
, , ,[9] Remarks on the Dirichlet and state-constraint problems for quasilinear parabolic equations, Adv. Differential Equations 8 no. 8 (2003), 897-922 | MR | Zbl
, ,[10] Comparison results between minimal barriers and viscosity solutions for geometric evolutions, Ann. Sc. Norm. Super. Pisa Cl. Sci. 26 no. 1 (1998), 97-131 | EuDML | Numdam | MR | Zbl
, ,[11] Crystalline mean curvature flow of convex sets, Arch. Ration. Mech. Anal. 179 no. 1 (2006), 109-152 | MR | Zbl
, , , ,[12] The obstacle problem revisited, J. Fourier Anal. Appl. 4 (1998), 383-402 | EuDML | MR | Zbl
,[13] A discussion about the homogenization of moving interfaces, J. Math. Pures Appl. 91 no. 4 (2009), 339-363 | MR | Zbl
, , ,[14] Anisotropic curvature-driven flow of convex sets, Nonlinear Anal. 65 no. 8 (2006), 1547-1577 | MR | Zbl
, ,[15] An algorithm for mean curvature motion, Interfaces Free Bound. 6 no. 2 (2004), 195-218 | MR | Zbl
,[16] An introduction to total variation for image analysis, Theoretical Foundations and Numerical Methods for Sparse Recovery, Radon Ser. Comp. Appl. Math. vol. 9, De Gruyter (2010), 263-340 | MR | Zbl
, , , , ,[17] Implicit time discretization of the mean curvature flow with a discontinuous forcing term, Interfaces Free Bound. 10 (2008), 283-300 | MR | Zbl
, ,[18] Effective motion of a curvature-sensitive interface through a heterogeneous medium, Interfaces Free Bound. 6 (2004), 151-173 | MR | Zbl
, ,[19] Userʼs guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 no. 1 (1992), 1-67
, , ,[20] Comparison results for quasilinear equations in annular domains and applications, Comm. Partial Differential Equations 27 no. 1–2 (2002), 283-323 | MR | Zbl
,[21] Pulsating wave for mean curvature flow in inhomogeneous medium, European J. Appl. Math. 19 (2008), 661-699 | MR | Zbl
, , ,[22] Forces for morphogenesis investigated with laser microsurgery and quantitative modeling, Science 300 no. 5616 (2003), 145-149
, , , , , , ,[23] A deterministic-control based approach to fully nonlinear parabolic and elliptic equations, Comm. Pure Appl. Math. 63 (2010), 1298-1350 | MR | Zbl
, ,[24] Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differential Equations 3 no. 2 (1995), 253-271 | MR | Zbl
, ,[25] Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, Univ. Lecture Ser. vol. 22, Amer. Math. Soc., Providence, RI (2001) | MR
,[26] Frontiere minimali con ostacoli, Ann. Univ. Ferrara 16 no. 1 (1971), 29-37 | MR | Zbl
,[27] Crystals, Defects and Microstructures, Cambridge University Press (2001)
,[28] Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science, Cambridge University Press (1999) | MR | Zbl
,Cité par Sources :