@article{AIHPC_2012__29_6_861_0, author = {Varvaruca, Eugen and Weiss, Georg S.}, title = {The Stokes conjecture for waves with vorticity}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, publisher = {Elsevier}, volume = {29}, number = {6}, year = {2012}, pages = {861-885}, doi = {10.1016/j.anihpc.2012.05.001}, zbl = {1317.35209}, mrnumber = {2995099}, language = {en}, url = {http://www.numdam.org/item/AIHPC_2012__29_6_861_0} }

Varvaruca, Eugen; Weiss, Georg S. The Stokes conjecture for waves with vorticity. Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 6, pp. 861-885. doi : 10.1016/j.anihpc.2012.05.001. http://www.numdam.org/item/AIHPC_2012__29_6_861_0/

[1] Almgrenʼs Big Regularity Paper: Q-Valued Functions Minimizing Dirichletʼs Integral and the Regularity of Area-Minimizing Rectifiable Currents up to Codimension 2, World Scientific Monograph Series in Mathematics vol. 1, World Scientific Publishing Co. Inc., River Edge, NJ (2000) | MR 1777737

,[2] Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981), 105-144 | MR 618549 | Zbl 0449.35105

, ,[3] On the Stokes conjecture for the wave of extreme form, Acta Math. 148 (1982), 193-214 | MR 666110 | Zbl 0495.76021

, , ,[4] Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math. 57 no. 4 (2004), 481-527 | MR 2027299 | Zbl 1038.76011

, ,[5] Free boundary regularity for a problem with right hand side, Interfaces Free Bound. 13 (2011), 223-238 | MR 2813524 | Zbl 1219.35372

,[6] Sur la détermination rigoreuse des ondes permanentes périodiques dʼampleur finie, J. Math. Pures Appl. 13 (1934), 217-291 | MR 3533020 | Zbl 0010.22702

,[7] Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity, J. Amer. Math. Soc. 7 no. 1 (1994), 199-219 | MR 1220787 | Zbl 0802.35120

, ,[8] Weak convergence methods for nonlinear partial differential equations, CBMS Regional Conference Series in Mathematics vol. 74 (1990) | MR 1034481 | Zbl 0698.35004

,[9] Monotonicity properties of variational integrals, ${A}_{p}$ weights and unique continuation, Indiana Univ. Math. J. 35 no. 2 (1986), 245-268 | MR 833393 | Zbl 0678.35015

, ,[10] Theorie der Wellen, Abhand. Koen. Boehmischen Gesel. Wiss., Prague (1802)

,[11] Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften vol. 224, Springer-Verlag, Berlin (1983) | MR 737190 | Zbl 0562.35001

, ,[12] Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics vol. 80, Birkhäuser Verlag, Basel (1984) | MR 775682 | Zbl 0545.49018

,[13] On the boundary point principle for elliptic equations in the plane, Bull. Amer. Math. Soc. 74 (1968), 666-670 | MR 227611 | Zbl 0157.18102

,[14] Partial regularity for weak solutions of a nonlinear elliptic equation, Manuscripta Math. 79 no. 2 (1993), 161-172 | MR 1216772 | Zbl 0811.35011

,[15] Proof of the Stokes conjecture in the theory of surface waves, Stud. Appl. Math. 108 no. 2 (2002), 217-244, Dinamika Sploshn. Sredy 57 (1982), 41-76 | MR 1883094 | Zbl 0522.76017

,[16] A monotonicity formula for Yang–Mills fields, Manuscripta Math. 43 no. 2–3 (1983), 131-166 | MR 707042 | Zbl 0521.58024

,[17] O. Savin, E. Varvaruca, Existence of steady free-surface water waves with corners of 120° at their crests in the presence of vorticity, submitted for publication.

[18] Analytic aspects of the harmonic map problem, Seminar on Nonlinear Partial Differential Equations, Berkeley, CA, 1983, Math. Sci. Res. Inst. Publ. vol. 2, Springer, New York (1984), 321-358

,[19] Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form, Math. and Phys. Papers vol. 1, Cambridge University Press, Cambridge (1880), 225-228

,[20] Steady water waves, Bull. Amer. Math. Soc. (N.S.) 47 no. 4 (2010), 671-694 | MR 2721042 | Zbl 05800625

,[21] Singularities of Bernoulli free boundaries, Comm. Partial Differential Equations 31 no. 10–12 (2006), 1451-1477 | MR 2273961 | Zbl 1111.35137

,[22] On the existence of extreme waves and the Stokes conjecture with vorticity, J. Differential Equations 246 no. 10 (2009), 4043-4076 | MR 2514735 | Zbl 1162.76011

,[23] A geometric approach to generalized Stokes conjectures, Acta Math. 206 (2011), 363-403 | MR 2810856 | Zbl 1238.35194

, ,[24] Partial regularity for weak solutions of an elliptic free boundary problem, Comm. Partial Differential Equations 23 no. 3–4 (1998), 439-455 | MR 1620644 | Zbl 0897.35017

,[25] Partial regularity for a minimum problem with free boundary, J. Geom. Anal. 9 no. 2 (1999), 317-326 | MR 1759450 | Zbl 0960.49026

,