Lane–Emden problems: Asymptotic behavior of low energy nodal solutions
Annales de l'I.H.P. Analyse non linéaire, Volume 30 (2013) no. 1, p. 121-140
We study the nodal solutions of the Lane–Emden–Dirichlet problem {-Δu=|u| p-1 u,inΩ,u=0,onΩ, where Ω is a smooth bounded domain in 2 and p>1. We consider solutions u p satisfying p Ω|u p | 2 16πeasp+ and we are interested in the shape and the asymptotic behavior as p+.First we prove that (⁎) holds for least energy nodal solutions. Then we obtain some estimates and the asymptotic profile of this kind of solutions. Finally, in some cases, we prove that pu p can be characterized as the difference of two Greenʼs functions and the nodal line intersects the boundary of Ω, for large p.
DOI : https://doi.org/10.1016/j.anihpc.2012.06.005
Classification:  35J91,  35B32
Keywords: Superlinear elliptic boundary value problem, Least energy nodal solution, Asymptotic behavior, Variational methods
@article{AIHPC_2013__30_1_121_0,
     author = {Grossi, Massimo and Grumiau, Christopher and Pacella, Filomena},
     title = {Lane--Emden problems: Asymptotic behavior of low energy nodal solutions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {30},
     number = {1},
     year = {2013},
     pages = {121-140},
     doi = {10.1016/j.anihpc.2012.06.005},
     zbl = {1266.35106},
     mrnumber = {3011294},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2013__30_1_121_0}
}
Grossi, Massimo; Grumiau, Christopher; Pacella, Filomena. Lane–Emden problems: Asymptotic behavior of low energy nodal solutions. Annales de l'I.H.P. Analyse non linéaire, Volume 30 (2013) no. 1, pp. 121-140. doi : 10.1016/j.anihpc.2012.06.005. http://www.numdam.org/item/AIHPC_2013__30_1_121_0/

[1] Adimurthi, Massimo Grossi, Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity, Proc. Amer. Math. Soc. 132 no. 4 (2004), 1013-1019 | MR 2045416 | Zbl 1083.35035

[2] Amandine Aftalion, Filomena Pacella, Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains, C. R. Math. Acad. Sci. Paris 339 no. 5 (2004), 339-344 | MR 2092460 | Zbl 1113.35063

[3] Thomas Bartsch, Tobias Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations, Topol. Methods Nonlinear Anal. 22 no. 1 (2003), 1-14 | MR 2037264 | Zbl 1094.35041

[4] Thomas Bartsch, Tobias Weth, Michel Willem, Partial symmetry of least energy nodal solutions to some variational problems, J. Anal. Math. 96 (2005), 1-18 | MR 2177179 | Zbl 1206.35086

[5] Mohamed Ben Ayed, Khalil El Mehdi, Filomena Pacella, Blow-up and nonexistence of sign changing solutions to the Brezis–Nirenberg problem in dimension three, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 no. 4 (2006), 567-589 | Zbl 1157.35357

[6] Mohamed Ben Ayed, Khalil El Mehdi, Filomena Pacella, Blow-up and nonexistence of sign changing solutions to the Brezis–Nirenberg problem in dimension three, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 no. 4 (2006), 567-589 | MR 2245756 | Zbl 1157.35357

[7] Mohamed Ben Ayed, Khalil El Mehdi, Filomena Pacella, Classification of low energy sign-changing solutions of an almost critical problem, J. Funct. Anal. 250 no. 2 (2007), 347-373 | MR 2352484 | Zbl 1155.35371

[8] Denis Bonheure, Vincent Bouchez, Christopher Grumiau, Jean Van Schaftingen, Asymptotics and symmetries of least energy nodal solutions of Lane–Emden problems with slow growth, Commun. Contemp. Math. 10 no. 4 (2008), 609-631 | MR 2444849 | Zbl 1156.35037

[9] Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. Théorie et applications, Masson, Paris (1983) | MR 697382 | Zbl 0511.46001

[10] Alfonso Castro, Jorge Cossio, John M. Neuberger, A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math. 27 no. 4 (1997), 1041-1053 | MR 1627654 | Zbl 0907.35050

[11] Khalil El Mehdi, Massimo Grossi, Asymptotic estimates and qualitative properties of an elliptic problem in dimension two, Adv. Nonlinear Stud. 4 no. 1 (2004), 15-36 | MR 2033557 | Zbl 1065.35112

[12] Pierpaolo Esposito, Monica Musso, Angela Pistoia, Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent, J. Differential Equations 227 no. 1 (2006), 29-68 | MR 2233953 | Zbl 1254.35083

[13] Pierpaolo Esposito, Monica Musso, Angela Pistoia, On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity, Proc. Lond. Math. Soc. (3) 94 no. 2 (2007), 497-519 | MR 2311000 | Zbl 05145509

[14] Basilis Gidas, Wei Ming Ni, Louis Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 no. 3 (1979), 209-243 | MR 544879 | Zbl 0425.35020

[15] Christopher Grumiau, Christophe Troestler, Oddness of least energy nodal solutions on radial domains, Electron. J. Differ. Equ. Conf. 18 (2010), 23-31 | MR 2660848 | Zbl 1198.35097

[16] Zheng-Chao Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 no. 2 (1991), 159-174 | Numdam | MR 1096602 | Zbl 0729.35014

[17] Li Ma, Juncheng C. Wei, Convergence for a Liouville equation, Comment. Math. Helv. 76 no. 3 (2001), 506-514 | MR 1854696 | Zbl 0987.35056

[18] Antonios D. Melas, On the nodal line of the second eigenfunction of the Laplacian in 𝐑 2 , J. Differential Geom. 35 no. 1 (1992), 255-263 | MR 1152231 | Zbl 0769.58056

[19] Filomena Pacella, Tobias Weth, Symmetry of solutions to semilinear elliptic equations via Morse index, Proc. Amer. Math. Soc. 135 no. 6 (2007), 1753-1762 | MR 2286085 | Zbl 1190.35096

[20] Xiaofeng Ren, Juncheng Wei, Single-point condensation and least-energy solutions, Proc. Amer. Math. Soc. 124 no. 1 (1996), 111-120 | MR 1301045 | Zbl 0845.35012

[21] Xiaofeng Ren, Juncheng Wei, On a two-dimensional elliptic problem with large exponent in nonlinearity, Trans. Amer. Math. Soc. 343 no. 2 (1994), 749-763 | MR 1232190 | Zbl 0804.35042