Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion
Annales de l'I.H.P. Analyse non linéaire, Volume 30 (2013) no. 1, p. 157-178

This paper deals with a boundary-value problem in three-dimensional smoothly bounded domains for a coupled chemotaxis-Stokes system generalizing the prototype {n t +u·n=Δn m -·(nc),c t +u·c=Δc-nc,u t +P=Δu+nφ,·u=0, which describes the motion of oxygen-driven swimming bacteria in an incompressible fluid.It is proved that global weak solutions exist whenever m>8 7 and the initial data (n 0 ,c 0 ,u 0 ) are sufficiently regular satisfying n 0 >0 and c 0 >0. This extends a recent result by Di Francesco, Lorz and Markowich [M. Di Francesco, A. Lorz, P.A. Markowich, Chemotaxis–fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior, Discrete Contin. Dyn. Syst. Ser. A 28 (2010) 1437–1453] which asserts global existence of weak solutions under the constraint m[7+217 12,2].

Ce papier considère un problème aux limites dans des domaines tridimensionnels réguliers et bornés, plus précisément, un système couplé de chemotaxie-Stokes qui généralise le prototype {n t +u·n=Δn m -·(nc),c t +u·c=Δc-nc,u t +P=Δu+nφ,·u=0 et qui décrit le mouvement des bactéries nageuses conduites par lʼoxygène dans un fluide incompressible.On montre que les solutions faibles globales existent quand m>8 7 et la donnée initiale (n 0 ,c 0 ,u 0 ) est suffisamment régulière et vérifie n 0 >0 et c 0 >0. Cela étend le résultat récent de Di Francesco, Lorz et Markowich [M. Di Francesco, A. Lorz, P.A. Markowich, Chemotaxis–fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior, Discrete Contin. Dyn. Syst. Ser. A 28 (2010) 1437–1453] qui affirme lʼexistence globale de solutions faibles sous la contrainte m[7+217 12,2].

DOI : https://doi.org/10.1016/j.anihpc.2012.07.002
Classification:  35K55,  35Q92,  35Q35,  92C17
Keywords: Chemotaxis, Stokes, Nonlinear diffusion, Global existence, Boundedness
@article{AIHPC_2013__30_1_157_0,
     author = {Tao, Youshan and Winkler, Michael},
     title = {Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {30},
     number = {1},
     year = {2013},
     pages = {157-178},
     doi = {10.1016/j.anihpc.2012.07.002},
     zbl = {1283.35154},
     mrnumber = {3011296},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2013__30_1_157_0}
}
Tao, Youshan; Winkler, Michael. Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Annales de l'I.H.P. Analyse non linéaire, Volume 30 (2013) no. 1, pp. 157-178. doi : 10.1016/j.anihpc.2012.07.002. http://www.numdam.org/item/AIHPC_2013__30_1_157_0/

[1] V. Calvez, J.A. Carrillo, Volume effects in the Keller–Segel model: Energy estimates preventing blow-up, J. Math. Pures Appl. 86 no. 9 (2006), 155-175 | MR 2247456 | Zbl 1116.35057

[2] R. Dal Passo, H. Garcke, G. Grün, On a fourth-order degenerate parabolic equation: Global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal. 29 no. 2 (1998), 321-342 | Zbl 0929.35061

[3] C. Dombrowski, L. Cisneros, S. Chatkaew, R.E. Goldstein, J.O. Kessler, Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett. 93 (2004)

[4] M. Di Francesco, A. Lorz, P.A. Markowich, Chemotaxis–fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior, Discrete Contin. Dyn. Syst. Ser. A 28 (2010), 1437-1453 | MR 2679718 | Zbl 1276.35103

[5] R.J. Duan, A. Lorz, P.A. Markowich, Global solutions to the coupled chemotaxis–fluid equations, Comm. Partial Differential Equations 35 (2010), 1635-1673 | MR 2754058 | Zbl 1275.35005

[6] A. Friedman, Partial Differential Equations, Holt, Rinehart & Winston, New York (1969) | MR 445088

[7] Y. Giga, H. Sohr, Abstract L p estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains, J. Funct. Anal. 102 (1991), 72-94 | MR 1138838 | Zbl 0739.35067

[8] T. Hillen, K. Painter, A userʼs guide to PDE models for chemotaxis, J. Math. Biol. 58 (2009), 183-217 | MR 2448428 | Zbl 1161.92003

[9] D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations 215 no. 1 (2005), 52-107 | MR 2146345 | Zbl 1085.35065

[10] S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller–Segel systems of parabolic–parabolic type with small data, J. Differential Equations 252 no. 3 (2011), 2469-2491 | MR 2860626 | Zbl 1241.35118

[11] R. Kowalczyk, Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl. 305 (2005), 566-585 | MR 2130723 | Zbl 1065.35063

[12] J.L. Lions, Équations différentielles opérationnelles et problémes aux limites, Die Grundlehren der mathematischen Wissenschaften, Springer (1961) | MR 153974 | Zbl 0098.31101

[13] P.L. Lions, Résolution de problèmes elliptiques quasilinéaires, Arch. Ration. Mech. Anal. 74 no. 4 (1980), 335-353 | MR 588033 | Zbl 0449.35036

[14] J.-G. Liu, A. Lorz, A coupled chemotaxis–fluid model: Global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), 643-652 | Numdam | MR 2838394 | Zbl 1236.92013

[15] A. Lorz, Coupled chemotaxis fluid model, Math. Models Methods Appl. Sci. 20 (2010), 987-1004 | MR 2659745 | Zbl 1191.92004

[16] T. Senba, T. Suzuki, A quasi-linear system of chemotaxis, Abstr. Appl. Anal. 2006 (2006), 1-21 | MR 2211660 | Zbl 1134.35059

[17] J. Simon, Compact sets in the space L p (0,T;B), Ann. Mat. Pura Appl. 146 no. 4 (1987), 65-96 | MR 916688 | Zbl 0629.46031

[18] H. Sohr, The Navier–Stokes Equations. An Elementary Functional Analytic Approach, Birkhäuser, Basel (2001) | MR 1928881 | Zbl 0983.35004

[19] Z. Szymańska, C. Morales-Rodrigo, M. Lachowicz, M. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions, Math. Models Methods Appl. Sci. 19 (2009), 257-281 | MR 2498435 | Zbl 1171.35066

[20] Y. Tao, M. Winkler, A chemotaxis–haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal. 43 (2011), 685-704 | MR 2784872 | Zbl 1259.35210

[21] Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity, J. Differential Equations 252 (2012), 692-715 | MR 2852223 | Zbl 05986529

[22] Y. Tao, M. Winkler, Global existence and boundedness in a Keller–Segel–Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst. Ser. A 32 no. 5 (2012) | MR 2871341 | Zbl 1276.35105

[23] I. Tuval, L. Cisneros, C. Dombrowski, C.W. Wolgemuth, J.O. Kessler, R.E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA 102 (2005), 2277-2282 | Zbl 1277.35332

[24] J.L. Vázquez, The Porous Medium Equations, Oxford Mathematical Monographs, Oxford University Press, Oxford (2007) | MR 2286292

[25] M. Winkler, A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci. 25 (2002), 911-925 | MR 1918057 | Zbl 1007.35043

[26] M. Winkler, Does a ‘volume-filling effect’ always prevent chemotactic collapse?, Math. Methods Appl. Sci. 33 (2010), 12-24 | MR 2591220 | Zbl 1182.35220

[27] M. Winkler, Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations 37 (2012), 319-352 | MR 2876834 | Zbl 1236.35192