On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system
Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 1, p. 1-22
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consulter l'article sur le site de la revue
The paper concerns multiplicity of vector solutions for nonlinear Schrödinger systems, in particular of semi-positive solutions. New variational techniques are developed to study the existence of this type of solutions. Asymptotic behaviors are examined in various parameter regimes including both attractive and repulsive cases.
@article{AIHPC_2013__30_1_1_0,
     author = {Sato, Yohei and Wang, Zhi-Qiang},
     title = {On the multiple existence of semi-positive solutions for a nonlinear Schr\"odinger system},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {30},
     number = {1},
     year = {2013},
     pages = {1-22},
     doi = {10.1016/j.anihpc.2012.05.002},
     zbl = {06154080},
     mrnumber = {3011289},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2013__30_1_1_0}
}
Sato, Yohei; Wang, Zhi-Qiang. On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 1, pp. 1-22. doi : 10.1016/j.anihpc.2012.05.002. http://www.numdam.org/item/AIHPC_2013__30_1_1_0/

[1] A. Ambrosetti, E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris 342 (2006), 453-458 | MR 2214594 | Zbl 1094.35112

[2] A. Ambrosetti, E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc. 75 (2007), 67-82 | MR 2302730 | Zbl 1130.34014

[3] A. Ambrosetti, E. Colorado, D. Ruiz, Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations 30 (2007), 85-112 | MR 2333097 | Zbl 1123.35015

[4] A. Ambrosetti, G. Cerami, D. Ruiz, Solitons of linearly coupled systems of semilinear non-autonomous equations on 𝐑 n , J. Funct. Anal. 254 (2008), 2816-2845 | MR 2414222 | Zbl 1148.35080

[5] T. Bartsch, E.N. Dancer, Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations 37 (2010), 345-361 | MR 2592975 | Zbl 1189.35074

[6] T. Bartsch, Z.-Q. Wang, Note on ground states of nonlinear Schrödinger systems, J. Partial Differential Equations 19 (2006), 200-207 | MR 2252973 | Zbl 1104.35048

[7] T. Bartsch, Z.-Q. Wang, J. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl. 2 (2007), 353-367 | MR 2372993 | Zbl 1153.35390

[8] D. Cao, E.S. Noussair, Multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations, J. Differential Equations 203 (2004), 292-312 | MR 2073688 | Zbl 1063.35142

[9] K.-C. Chang, Z.-Q. Wang, Multiple non semi-trivial solutions for elliptic systems, Adv. Nonlinear Stud. 12 (2012), 363-381 | MR 2951721 | Zbl 1255.35097

[10] K.-C. Chang, Z.-Q. Wang, T. Zhang, On a new index theory and non semi-trivial solutions for elliptic systems, Discrete Contin. Dyn. Syst. 28 (2010), 809-826 | MR 2644766 | Zbl 1193.35036

[11] M. Conti, S. Terracini, G. Verzini, Nehariʼs problem and competing species system, Ann. Inst. H. Poincaré 19 (2002), 871-888 | Numdam | MR 1939088 | Zbl 1090.35076

[12] E.N. Dancer, Real analyticity and non-degeneracy, Math. Ann. 325 (2003), 369-392 | MR 1962054 | Zbl 1040.35033

[13] E.N. Dancer, J. Wei, T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré 27 (2010), 953-969 | Numdam | MR 2629888 | Zbl 1191.35121

[14] S. Fučík, M. Kučera, J. Nečas, J. Souček, V. Souček, Morse–Sard theorem in infinite dimensional Banach spaces and investigation of the set of all critical levels, Časopis Pěst. Mat. 99 (1974), 217-243 | MR 370649 | Zbl 0291.58008

[15] T.-C. Lin, J. Wei, Ground state of N coupled nonlinear Schrödinger equations in 𝐑 n , n3, Comm. Math. Phys. 255 (2005), 629-653 | MR 2135447 | Zbl 1119.35087

[16] T.-C. Lin, J. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 403-439 | Numdam | MR 2145720 | Zbl 1080.35143

[17] Z.L. Liu, Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys. 282 (2008), 721-731 | MR 2426142 | Zbl 1156.35093

[18] Z.L. Liu, Z.-Q. Wang, Ground states and bound states of a nonlinear Schrödinger system, Adv. Nonlinear Stud. 10 (2010), 175-193 | MR 2574384 | Zbl 1198.35067

[19] L.A. Maia, E. Montefusco, B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differential Equations 299 (2006), 743-767 | MR 2263573 | Zbl 1104.35053

[20] E. Montefusco, B. Pellacci, M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems, J. Eur. Math. Soc. 10 (2008), 41-71 | MR 2349896 | Zbl 1187.35241

[21] B. Noris, M. Ramos, Existence and bounds of positive solutions for a nonlinear Schrödinger system, Proc. Amer. Math. Soc. 138 (2010), 1681-1692 | MR 2587453 | Zbl 1189.35086

[22] B. Noris, H. Tavares, S. Terracini, G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math. 63 (2010), 267-302 | MR 2599456 | Zbl 1189.35314

[23] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math. vol. 65 (1986) | MR 845785 | Zbl 0609.58002

[24] B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in 𝐑 n , Comm. Math. Phys. 271 (2007), 199-221 | MR 2283958 | Zbl 1147.35098

[25] Y. Sato, K. Tanaka, Sign-changing multi-bump solutions for nonlinear Schrödinger equations with steep potential wells, Trans. Amer. Math. Soc. 361 (2009), 6205-6253 | MR 2538593 | Zbl 1198.35261

[26] H. Tavares, S. Terracini, Sign-changing solutions of competition–diffusion elliptic systems and optimal partition problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 29 (2012), 279-300 | Numdam | MR 2901198 | Zbl 1241.35046

[27] S. Terracini, G. Verzini, Multipulse phase in k-mixtures of Bose–Einstein condenstates, Arch. Ration. Mech. Anal. 194 (2009), 717-741 | MR 2563622 | Zbl 1181.35069

[28] R. Tian, Z.-Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems, Topol. Methods Nonlinear Anal. 37 (2011), 203-223 | MR 2849820 | Zbl 1255.35101

[29] J. Wei, T. Weth, Nonradial symmetric bound states for a system of two coupled Schrödinger equations, Rend. Lincei Mat. Appl. 18 (2007), 279-293 | MR 2318821 | Zbl 1229.35019

[30] J. Wei, T. Weth, Radial solutions and phase separation in a system of two coupled Schrödinger equations, Arch. Ration. Mech. Anal. 190 (2008), 83-106 | MR 2434901 | Zbl 1161.35051