Equilibrium states for non-uniformly expanding maps: Decay of correlations and strong stability
Annales de l'I.H.P. Analyse non linéaire, Volume 30 (2013) no. 2, p. 225-249
We study the rate of decay of correlations for equilibrium states associated to a robust class of non-uniformly expanding maps where no Markov assumption is required. We show that the Ruelle–Perron–Frobenius operator acting on the space of Hölder continuous observables has a spectral gap and deduce the exponential decay of correlations and the central limit theorem. In particular, we obtain an alternative proof for the existence and uniqueness of the equilibrium states and we prove that the topological pressure varies continuously. Finally, we use the spectral properties of the transfer operators in space of differentiable observables to obtain strong stability results under deterministic and random perturbations.
@article{AIHPC_2013__30_2_225_0,
     author = {Castro, A. and Varandas, P.},
     title = {Equilibrium states for non-uniformly expanding maps: Decay of correlations and strong stability},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {30},
     number = {2},
     year = {2013},
     pages = {225-249},
     doi = {10.1016/j.anihpc.2012.07.004},
     zbl = {1336.37028},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2013__30_2_225_0}
}
Castro, A.; Varandas, P. Equilibrium states for non-uniformly expanding maps: Decay of correlations and strong stability. Annales de l'I.H.P. Analyse non linéaire, Volume 30 (2013) no. 2, pp. 225-249. doi : 10.1016/j.anihpc.2012.07.004. http://www.numdam.org/item/AIHPC_2013__30_2_225_0/

[1] A. Arbieto, C. Matheus, Fast decay of correlations of equilibrium states of open classes of non-uniformly expanding maps and potentials, www.preprint.impa.br

[2] V. Baladi, L.S. Young, On the spectra of randomly perturbed expanding maps, Comm. Math. Phys. 156 (1993), 355-385 | MR 1233850 | Zbl 0809.60101

[3] V. Baladi, Positive Transfer Operators and Decay of Correlations, World Scientific Publishing Co. Inc. (2000) | MR 1793194 | Zbl 1012.37015

[4] V. Baladi, S.S. Gouezel, Good Banach spaces for piecewise hyperbolic maps via interpolation, Ann. Inst. H. Poincare Anal. Non Lineaire 26 (2009), 1453-1481 | Numdam | MR 2542733 | Zbl 1183.37045

[5] V. Baladi, S.S. Gouezel, Banach spaces for piecewise cone hyperbolic maps, J. Mod. Dyn. 4 (2010), 91-137 | MR 2643889 | Zbl 1226.37008

[6] V. Baladi, D. Smania, Linear response formula for piecewise expanding unimodal maps, Nonlinearity 21 (2008), 677-711 | MR 2399821 | Zbl 1140.37008

[7] V. Baladi, D. Smania, Analyticity of the SRB measure for holomorphic families of quadratic-like Collet–Eckmann maps, Proc. Amer. Math. Soc. 137 (2009), 1431-1437 | MR 2465669 | Zbl 1170.37016

[8] V. Baladi, M. Tsujii, Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier 57 (2007), 27-54 | Numdam | MR 2313087

[9] M. Blank, G. Keller, C. Liverani, Ruelle–Perron–Frobenius spectrum for Anosov maps, Nonlinearity 15 (2001), 1905-1973 | MR 1938476 | Zbl 1021.37015

[10] T. Bomfim, A. Castro, P. Varandas, Linear response formula for equilibrium states in non-uniformly expanding dynamics, arXiv:1205.5361 (2012) | MR 3035975 | Zbl 06548172

[11] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. vol. 470, Springer Verlag (1975) | MR 442989 | Zbl 0308.28010

[12] R. Bowen, D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), 181-202 | MR 380889 | Zbl 0311.58010

[13] H. Bruin, G. Keller, Equilibrium states for S-unimodal maps, Ergodic Theory Dynam. Systems 18 (1998), 765-789 | MR 1645373 | Zbl 0916.58020

[14] H. Bruin, M. Todd, Equilibrium states for interval maps: potentials with sup ϕ- inf ϕ<h top (f), Comm. Math. Phys. 283 (2008), 579-611 | MR 2434739 | Zbl 1157.82022

[15] J. Buzzi, V. Maume-Deschamps, Decay of correlations for piecewise invertible maps in higher dimensions, Israel J. Math. 131 (2002), 203-220 | MR 1942309 | Zbl 1014.37017

[16] J. Buzzi, O. Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, Ergodic Theory Dynam. Systems 23 (2003), 1383-1400 | MR 2018604 | Zbl 1037.37005

[17] J. Buzzi, T. Fisher, Intrinsic ergodicity for certain nonhyperbolic robustly transitive systems, arXiv:0903.3692

[18] A. Castro, Backward inducing and exponential decay of correlations for partially hyperbolic attractors, Israel J. Math. 130 (2002), 29-75 | MR 1919371 | Zbl 1186.37041

[19] A. Castro, Fast mixing for attractors with mostly contracting central direction, Ergodic Theory Dynam. Systems 24 (2004), 17-44 | MR 2041259 | Zbl 1115.37023

[20] M. Demers, C. Liverani, Stability of statistical properties in two-dimensional piecewise hyperbolic maps, Trans. Amer. Math. Soc. 360 (2008), 4777-4814 | MR 2403704 | Zbl 1153.37019

[21] M. Denker, F. Przytycki, M. Urbański, On the transfer operator for rational functions on the Riemann sphere, Ergodic Theory Dynam. Systems 16 (1996), 255-266 | MR 1389624 | Zbl 0852.46024

[22] D. Dolgopyat, On differentiability of SRB states for partially hyperbolic systems, Invent. Math. 155 (2004), 389-449 | MR 2031432 | Zbl 1059.37021

[23] S. Gouezel, C. Liverani, Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Systems 26 (2006), 189-217 | MR 2201945 | Zbl 1088.37010

[24] H. Hennion, L. Hervé, Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness, Lecture Notes in Math. vol. 1766 (2001) | MR 1862393 | Zbl 0983.60005

[25] T. Hunt, R. Mackay, Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor, Nonlinearity 16 (2003), 1499-1510 | MR 1986308 | Zbl 1040.37072

[26] R. Leplaideur, I. Rios, Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes, Nonlinearity 19 (2006), 2667-2694 | MR 2267723 | Zbl 1190.37017

[27] C. Liverani, Decay of correlations, Ann. of Math. 142 (1995), 239-301 | MR 1343323 | Zbl 0871.58059

[28] C. Liverani, B. Saussol, S. Vaienti, Conformal measure and decay of correlation for covering weighted systems, Ergodic Theory Dynam. Systems 18 no. 6 (1998), 1399-1420 | MR 1658635 | Zbl 0915.58061

[29] K. Oliveira, M. Viana, Thermodynamical formalism for an open classes of potentials and non-uniformly hyperbolic maps, Ergodic Theory Dynam. Systems 28 (2008) | MR 2408389 | Zbl 1154.37330

[30] Ya. Pesin, S. Senti, K. Zhang, Lifting measures to inducing schemes, Ergodic Theory Dynam. Systems 28 (2008), 553-574 | MR 2408392 | Zbl 1154.37302

[31] V. Pinheiro, Expanding measures, Ann. Inst. H. Poincare Anal. Non Lineaire 28 (2011), 889-939 | Numdam | Zbl 1254.37026

[32] V. Pinheiro, P. Varandas, Thermodynamical formalism for expanding measures, preprint, UFBA. | MR 2859932

[33] F. Przytycki, J. Rivera-Letelier, Statistical properties of topological Collet–Eckmann maps, Ann. Sci. Ec. Norm. Super. 40 (2007), 135-178 | Numdam | MR 2332354 | Zbl 1115.37048

[34] F. Przytycki, J. Rivera-Letelier, Nice inducing schemes and the thermodynamics of rational maps, Comm. Math. Phys. 301 no. 3 (2011), 661-707 | MR 2784276 | Zbl 1211.37055

[35] D. Ruelle, Differentiation of SRB states, Comm. Math. Phys. 187 (1997), 227-241 | MR 1463827 | Zbl 0895.58045

[36] H.H. Rugh, Cones and gauges in complex spaces: spectral gaps and complex Perron–Frobenius theory, Ann. of Math. 171 (2010), 1707-1752 | MR 2680397 | Zbl 1208.15026

[37] M. Sambarino, C. Vásquez, Bowen measure for derived from Anosov diffeomorphisms, arXiv:0904.1036

[38] O. Sarig, Thermodynamic formalism for countable Markov shifts, Ergodic Theory Dynam. Systems 19 (1999), 1565-1593 | MR 1738951 | Zbl 0994.37005

[39] Ya. Sinai, Gibbs measures in ergodic theory, Russian Math. Surveys 27 (1972), 21-69 | MR 399421 | Zbl 0246.28008

[40] P. Varandas, Correlation decay and recurrence asymptotics for some robust nonuniformly hyperbolic maps, J. Stat. Phys. 133 (2008), 813-839 | MR 2461185 | Zbl 1161.82003

[41] P. Varandas, M. Viana, Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps, Ann. Inst. H. Poincare Anal. Non Lineaire 27 (2010), 555-593 | Numdam | MR 2595192 | Zbl 1193.37009

[42] M. Viana, Stochastic Dynamics of Deterministic Systems, Colóquio Brasileiro de Matemática, IMPA (1997)

[43] M. Yuri, Thermodynamical formalism for countable to one Markov systems, Trans. Amer. Math. Soc. 335 (2003), 2949-2971 | MR 1975407 | Zbl 1095.37007

[44] L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. 147 no. 3 (1998), 585-650 | MR 1637655 | Zbl 0945.37009