Renormalization for piecewise smooth homeomorphisms on the circle
Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 3, p. 441-462
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consulter l'article sur le site de la revue
In this work we study the renormalization operator acting on piecewise smooth homeomorphisms on the circle, that turns out to be essentially the study of Rauzy–Veech renormalizations of generalized interval exchange maps with genus one. In particular we show that renormalizations of such maps with zero mean nonlinearity and satisfying certain smoothness and combinatorial assumptions converge to the set of piecewise affine interval exchange maps.
DOI : https://doi.org/10.1016/j.anihpc.2012.09.004
Classification:  37E10,  37E05,  37E20,  37C05,  37B10
@article{AIHPC_2013__30_3_441_0,
     author = {Cunha, Kleyber and Smania, Daniel},
     title = {Renormalization for piecewise smooth homeomorphisms on the circle},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {30},
     number = {3},
     year = {2013},
     pages = {441-462},
     doi = {10.1016/j.anihpc.2012.09.004},
     zbl = {1338.37052},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2013__30_3_441_0}
}
Cunha, Kleyber; Smania, Daniel. Renormalization for piecewise smooth homeomorphisms on the circle. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 3, pp. 441-462. doi : 10.1016/j.anihpc.2012.09.004. http://www.numdam.org/item/AIHPC_2013__30_3_441_0/

[1] K. Cunha, Transformações de intercâmbio de intervalos generalizadas de genus 1, Ph.D. Thesis, ICMC-USP, Brazil, 2010.

[2] K. Cunha, D. Smania, Rigidity for piecewise smooth homeomorphisms on the circle, preprint, 2012, http://lanl.arxiv.org/abs/1201.1401.

[3] Welington De Melo, Sebastian Van Strien, One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. (3) vol. 25, Springer-Verlag, Berlin (1993) | Zbl 0791.58003

[4] M.R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. 49 (1979), 5-233 | Numdam | Zbl 0448.58019

[5] M. Keane, Interval exchange transformations, Math. Z. 141 (1975), 25-31 | Zbl 0278.28010

[6] Y. Katznelson, D. Ornstein, The differentiability of the conjugation of certain diffeomorphisms of the circle, Ergodic Theory Dynam. Systems 9 no. 4 (1989), 643-680 | Zbl 0819.58033

[7] K.M. Khanin, Ya.G. Sinaĭ, A new proof of M. Hermanʼs theorem, Comm. Math. Phys. 112 no. 1 (1987), 89-101 | Zbl 0628.58021

[8] K. Khanin, A. Teplinsky, Hermanʼs theory revisited, Invent. Math. 178 no. 2 (2009), 333-344 | Zbl 1179.37059

[9] K.M. Khanin, E.B. Vul, Circle homeomorphisms with weak discontinuities, Dynamical Systems and Statistical Mechanics, Moscow, 1991, Adv. Soviet Math. vol. 3, Amer. Math. Soc., Providence, RI (1991), 57-98 | Zbl 0733.58026

[10] M. Martens, The periodic points of renormalization, Ann. of Math. (2) 147 no. 3 (1998), 543-584 | Zbl 0936.37017

[11] A. Nogueira, D. Rudolph, Topological weak-mixing of interval exchange maps, Ergodic Theory Dynam. Systems 17 no. 5 (1997), 1183-1209 | Zbl 0958.37010

[12] G. Rauzy, Échanges dʼintervalles et transformations induites, Acta Arith. 34 no. 4 (1979), 315-328 | Zbl 0414.28018

[13] Ya.G. Sinaĭ, Topics in Ergodic Theory, Princeton Math. Ser. vol. 44, Princeton University Press, Princeton, NJ (1994) | Zbl 0805.58005

[14] Ya.G. Sinaĭ, K.M. Khanin, Smoothness of conjugacies of diffeomorphisms of the circle with rotations, Uspekhi Mat. Nauk 44 no. 1(265) (1989), 57-82 | Zbl 0701.58053

[15] W.A. Veech, Interval exchange transformations, J. Anal. Math. 33 (1978), 222-272 | Zbl 0455.28006

[16] W.A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 no. 1 (1982), 201-242 | Zbl 0486.28014

[17] J.-C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne, Ann. Sci. École Norm. Sup. (4) 17 no. 3 (1984), 333-359 | Numdam | Zbl 0595.57027