@article{AIHPC_2013__30_5_845_0, author = {Viana, Marcelo and Yang, Jiagang}, title = {Physical measures and absolute continuity for one-dimensional center direction}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, publisher = {Elsevier}, volume = {30}, number = {5}, year = {2013}, pages = {845-877}, doi = {10.1016/j.anihpc.2012.11.002}, zbl = {06295444}, mrnumber = {3103173}, language = {en}, url = {http://www.numdam.org/item/AIHPC_2013__30_5_845_0} }

Viana, Marcelo; Yang, Jiagang. Physical measures and absolute continuity for one-dimensional center direction. Annales de l'I.H.P. Analyse non linéaire, Volume 30 (2013) no. 5, pp. 845-877. doi : 10.1016/j.anihpc.2012.11.002. http://www.numdam.org/item/AIHPC_2013__30_5_845_0/

[1] SRB measures for non-hyperbolic systems with multidimensional expansion, Ann. Sci. École Norm. Sup. 33 (2000), 1-32 | Numdam | MR 1743717 | Zbl 0955.37012

,[2] Statistical Analysis of Non-uniformly Expanding Dynamical Systems, Lecture Notes 24th Braz. Math. Colloq., IMPA, Rio de Janeiro (2003) | MR 2022495 | Zbl 1061.37019

,[3] Random perturbations of nonuniformly expanding maps, Geometric Methods in Dynamics. I Astérisque 286 (2003), xvii | MR 2052296 | Zbl 1043.37016

, ,[4] Hyperbolic times: frequency versus integrability, Ergodic Theory Dynam. Systems 24 (2004), 329-346 | MR 2054046 | Zbl 1069.37020

, ,[5] Stochastic stability of non-uniformly hyperbolic diffeomorphisms, Stoch. Dyn. 7 (2007), 299-333 | MR 2351040 | Zbl 1210.37022

, , ,[6] SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math. 140 (2000), 351-398 | MR 1757000 | Zbl 0962.37012

, , ,[7] Markov structures for non-uniformly expanding maps on compact manifolds in arbitrary dimension, Electron. Res. Announc. Amer. Math. Soc. 9 (2003), 26-31 | MR 1988869 | Zbl 1016.37014

, , ,[8] Markov structures and decay of correlations for non-uniformly expanding dynamical systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 817-839 | Numdam | MR 2172861 | Zbl 1134.37326

, , ,[9] Statistical stability for robust classes of maps with non-uniform expansion, Ergodic Theory Dynam. Systems 22 (2002), 1-32 | MR 1889563 | Zbl 1067.37034

, ,[10] Robust ergodic properties in partially hyperbolic dynamics, Trans. Amer. Math. Soc. 362 (2010), 1831-1867 | MR 2574879 | Zbl 1193.37028

,[11] Geodesic flows on closed Riemannian manifolds of negative curvature, Proc. Steklov Math. Inst. 90 (1967), 1-235 | MR 224110 | Zbl 0176.19101

,[12] On the regularization of conservative maps, Acta Math. 205 (2010), 5-18 | MR 2736152 | Zbl 1211.37029

,[13] Cocycles over partially hyperbolic maps, www.impa.br/~viana/ (2011) | Zbl 06266975

, , ,[14] Extremal Lyapunov exponents: an invariance principle and applications, Invent. Math. 181 (2010), 115-178 | MR 2651382 | Zbl 1196.37054

, ,[15] Absolute continuity, Lyapunov exponents and rigidity I: geodesic flows, www.impa.br/~viana/ (2011) | Zbl 1352.37084

, , ,[16] A. Avila, M. Viana, A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity II, in preparation.

[17] Removing zero central Lyapunov exponents, Ergodic Theory Dynam. Systems 23 (2003), 1655-1670 | MR 2032482 | Zbl 1048.37026

, ,[18] Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms, J. Inst. Math. Jussieu 1 (2002), 513-541 | MR 1954435 | Zbl 1031.37030

, , ,[19] Dynamics Beyond Uniform Hyperbolicity, Encyclopaedia Math. Sci. vol. 102, Springer-Verlag (2005) | MR 2105774 | Zbl 1060.37020

, , ,[20] Généricité dʼexposants de Lyapunov non-nuls pour des produits déterministes de matrices, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 579-624 | Numdam | MR 1981401 | Zbl 1025.37018

, , ,[21] SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. 115 (2000), 157-193 | MR 1749677 | Zbl 0996.37033

, ,[22] Partially hyperbolic dynamical systems, Izv. Acad. Nauk. SSSR 1 (1974), 177-212 | MR 343316 | Zbl 0304.58017

, ,[23] Introduction to Dynamical Systems, Cambridge University Press (2002) | MR 1963683 | Zbl 1314.37002

, ,[24] Partial hyperbolicity, Lyapunov exponents and stable ergodicity, J. Statist. Phys. 108 (2002), 927-942 | MR 1933439 | Zbl 1124.37308

, , ,[25] Stable ergodicity for partially hyperbolic attractors with negative central exponents, J. Mod. Dyn. 2 (2008), 63-81 | MR 2366230 | Zbl 1145.37021

, , , ,[26] Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center, Discrete Contin. Dyn. Syst. 22 (2008), 75-88 | MR 2410948 | Zbl 1154.37328

, , , , ,[27] Stable ergodicity of skew products, Ann. Sci. École Norm. Sup. 32 (1999), 859-889 | Numdam | MR 1717580 | Zbl 0942.37015

, ,[28] On the ergodicity of partially hyperbolic systems, Ann. of Math. 171 (2010), 451-489 | MR 2630044 | Zbl 1196.37057

, ,[29] Weakly expanding skew-products of quadratic maps, Ergodic Theory Dynam. Systems 23 (2003), 1401-1414 | MR 2018605 | Zbl 1037.37014

, , ,[30] Backward inducing and exponential decay of correlations for partially hyperbolic attractors with mostly contracting central direction, Israel J. Math. 130 (2002), 29-75 | MR 1919371

,[31] On dynamics of mostly contracting diffeomorphisms, Comm. Math. Phys. 213 (2000), 181-201 | MR 1782146 | Zbl 0964.37020

,[32] On differentiability of SRB states for partially hyperbolic systems, Invent. Math. 155 (2004), 389-449 | MR 2031432 | Zbl 1059.37021

,[33] Stable accessibility is ${C}^{1}$ dense, Astérisque 287 (2003), 33-60 | MR 2039999 | Zbl 1213.37053

, ,[34] Decay of correlations for nonuniformly expanding systems, Bull. Soc. Math. France 134 (2006), 1-31 | Numdam | MR 2233699 | Zbl 1111.37018

,[35] Creation of blenders in the conservative setting, Nonlinearity 23 (2010), 211-223 | MR 2578476 | Zbl 1191.37014

, , , ,[36] Some results on the integrability of the center bundle for partially hyperbolic diffeomorphisms, Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow, Fields Inst. Commun. vol. 51, Amer. Math. Soc. (2007), 103-109 | MR 2388692 | Zbl 1139.37018

, , ,[37] Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math. 172 (2008), 353-381 | MR 2390288 | Zbl 1136.37020

, , ,[38] Non-absolutely continuous foliations, Israel J. Math. 160 (2007), 173-187 | MR 2342495 | Zbl 1137.37014

, ,[39] Invariant Manifolds, Lect. Notes in Math. vol. 583, Springer-Verlag (1977) | MR 501173 | Zbl 0355.58009

, , ,[40] Lyapunov exponents, entropy and periodic points of diffeomorphisms, Publ. Math. IHES 51 (1980), 137-173 | Numdam | MR 573822 | Zbl 0445.58015

,[41] Contributions to the stability conjecture, Topology 17 (1978), 383-396 | MR 516217 | Zbl 0405.58035

,[42] A proof of the ${C}^{1}$ stability conjecture, Publ. Math. IHES 66 (1988), 161-210 | Numdam | MR 932138 | Zbl 0678.58022

,[43] An open dense set of stably ergodic diffeomorphisms in a neighborhood of a non-ergodic one, Topology 40 (2001), 259-278 | MR 1808220 | Zbl 0968.37011

, ,[44] On the Bernoulli nature of systems with some hyperbolic structure, Ergodic Theory Dynam. Systems 18 (1998), 441-456 | MR 1619567 | Zbl 0915.58076

, ,[45] Gibbs measures for partially hyperbolic attractors, Ergodic Theory Dynam. Systems 2 (1982), 417-438 | MR 721733 | Zbl 0519.58035

, ,[46] Families of invariant manifolds corresponding to non-zero characteristic exponents, Math. USSR. Izv. 10 (1976), 1261-1302

,[47] V. Pinheiro, Expanding measures, preprint, 2008. | Numdam | MR 2859932

[48] Sinai–Ruelle–Bowen measures for weakly expanding maps, Nonlinearity 19 (2006), 1185-1200 | MR 2222364 | Zbl 1100.37014

,[49] Ergodic attractors, Trans. Amer. Math. Soc. 312 (1989), 1-54 | MR 983869 | Zbl 0684.58008

, ,[50] Stably ergodic dynamical systems and partial hyperbolicity, J. Complexity 13 (1997), 125-179 | MR 1449765 | Zbl 0883.58025

, ,[51] C. Pugh, M. Viana, A. Wilkinson, Absolute continuity of foliations, in preparation.

[52] On the fundamental ideas of measure theory, Amer. Math. Soc. Transl. 10 (1952), 1-52, Mat. Sbornik 25 (1949), 107-150 | MR 30584

,[53] Absolutely singular dynamical foliations, Comm. Math. Phys. 219 (2001), 481-487 | MR 1838747 | Zbl 1031.37029

, ,[54] Geometric expansion, Lyapunov exponents and foliations, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 689-704 | Numdam | MR 2504049 | Zbl 1173.37031

, ,[55] Global Stability of Dynamical Systems, Springer-Verlag (1987) | MR 869255

,[56] Expanding endomorphisms of the circle revisited, Ergodic Theory Dynam. Systems 5 (1985), 285-289 | MR 796755 | Zbl 0583.58022

, ,[57] Pathological foliations and removable zero exponents, Invent. Math. 139 (2000), 495-508 | MR 1738057 | Zbl 0976.37013

, ,[58] Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817 | MR 228014 | Zbl 0202.55202

,[59] Physical measures for partially hyperbolic surface endomorphisms, Acta Math. 194 (2005), 37-132 | MR 2231338 | Zbl 1105.37022

,[60] Stable ergodicity for partially hyperbolic attractors with positive central Lyapunov exponents, J. Mod. Dyn. 3 (2009), 233-251 | MR 2504743 | Zbl 1185.37065

,[61] Statistical stability for diffeomorphisms with dominated splitting, Ergodic Theory Dynam. Systems 27 (2007), 253-283 | MR 2297096 | Zbl 1147.37019

,[62] Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents, Ann. of Math. 167 (2008), 643-680 | MR 2415384 | Zbl 1173.37019

,[63] M. Viana, J. Yang, Towards a theory of maps with mostly contracting center, in preparation.