Existence and qualitative properties of solutions to a quasilinear elliptic equation involving the Hardy–Leray potential
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 1, p. 1-22
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consulter l'article sur le site de la revue
In this work we deal with the existence and qualitative properties of the solutions to a supercritical problem involving the -Δ p (·) operator and the Hardy–Leray potential. Assuming 0Ω, we study the regularizing effect due to the addition of a first order nonlinear term, which provides the existence of solutions with a breaking of resonance. Once we have proved the existence of a solution, we study the qualitative properties of the solutions such as regularity, monotonicity and symmetry.
DOI : https://doi.org/10.1016/j.anihpc.2013.01.003
Classification:  35J20,  35J25,  35J62,  35J70,  35J92,  46E30,  46E35
@article{AIHPC_2014__31_1_1_0,
     author = {Merch\'an, Susana and Montoro, Luigi and Peral, Ireneo and Sciunzi, Berardino},
     title = {Existence and qualitative properties of solutions to a quasilinear elliptic equation involving the Hardy--Leray potential},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {31},
     number = {1},
     year = {2014},
     pages = {1-22},
     doi = {10.1016/j.anihpc.2013.01.003},
     zbl = {1291.35082},
     mrnumber = {3165277},
     language = {en},
     url = {http://http://www.numdam.org/item/AIHPC_2014__31_1_1_0}
}
Merchán, Susana; Montoro, Luigi; Peral, Ireneo; Sciunzi, Berardino. Existence and qualitative properties of solutions to a quasilinear elliptic equation involving the Hardy–Leray potential. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 1, pp. 1-22. doi : 10.1016/j.anihpc.2013.01.003. http://www.numdam.org/item/AIHPC_2014__31_1_1_0/

[1] P. Bènilan, L. Boccardo, T. Gallout, R. Gariepy, M. Pierre, J. Vázquez, An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 22 no. 2 (1995), 241-273 | Numdam | MR 1354907 | Zbl 0866.35037

[2] H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method, Bull. Soc. Brasil. Mat. (N.S. 22 no. 1 (1991), 1-37 | MR 1159383 | Zbl 0784.35025

[3] L. Boccardo, F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 no. 19 (1992), 581-597 | MR 1183665 | Zbl 0783.35020

[4] L. Boccardo, F. Murat, J.P. Puel, Résultats d'existence pour certains problèmes elliptiques quasilinéaires, Ann. Sc. Norm. Super. Pisa 11 no. 2 (1984), 213-235 | Numdam | MR 764943 | Zbl 0557.35051

[5] A. Dall'Aglio, Approximated solutions of equations with L 1 data. Application to the H-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl. 170 no. 4 (1996), 207-240 | MR 1441620 | Zbl 0869.35050

[6] G. Dal Maso, F. Murat, L. Orsina, A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 28 no. 4 (1999), 741-808 | Numdam | MR 1760541 | Zbl 0958.35045

[7] L. Damascelli, F. Pacella, Monotonicity and symmetry of solutions of p-Laplace equations, 1<p<2, via the moving plane method, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 26 no. 4 (1998), 689-707 | Numdam | MR 1648566 | Zbl 0930.35070

[8] L. Damascelli, F. Pacella, Monotonicity and symmetry results for p-Laplace equations and applications, Adv. Differential Equations 5 no. 7–9 (2000), 1179-1200 | MR 1776351 | Zbl 1002.35045

[9] L. Damascelli, B. Sciunzi, Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations, J. Differential Equations 206 no. 2 (2004), 483-515 | MR 2096703 | Zbl 1108.35069

[10] J. Dávila, I. Peral, Nonlinear elliptic problems with a singular weight on the boundary, Calc. Var. Partial Differential Equations 41 no. 3–4 (2011), 567-586 | MR 2796244 | Zbl 1232.35048

[11] E. Di Benedetto, C 1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 no. 8 (1983), 827-850 | MR 709038 | Zbl 0539.35027

[12] B. Gidas, W.M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 no. 3 (1979), 209-243 | MR 544879 | Zbl 0425.35020

[13] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, Clarendon Press, Oxford (1993) | MR 1207810 | Zbl 0776.31007

[14] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 no. 11 (1988), 1203-1219 | MR 969499 | Zbl 0675.35042

[15] S. Merchán, I. Peral, Remarks on the solvability of an elliptic equation with a supercritical term involving the Hardy–Leray potential, J. Math. Anal. Appl. 394 (2012), 347-359 | MR 2926226 | Zbl 1248.35081

[16] S. Merchán, L. Montoro, Remarks on the existence of solutions to some quasilinear elliptic problems involving the Hardy–Leray potential, Ann. Mat. Pura Appl., http://dx.doi.org/10.1007/s10231-012-0293-7. | MR 3180936

[17] L. Montoro, B. Sciunzi, M. Squassina, Asymptotic symmetry for a class of quasi-linear parabolic problems, Adv. Nonlinear Stud. 10 no. 4 (2010), 789-818 | MR 2683684 | Zbl 1253.35009

[18] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 no. 1 (1984), 126-150 | MR 727034 | Zbl 0488.35017

[19] P. Pucci, J. Serrin, The Maximum Principle, Birkhäuser, Boston (2007) | MR 2356201 | Zbl 1134.35001

[20] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247-302 | MR 170096 | Zbl 0128.09101

[21] J. Serrin, A symmetry problem in potential theory, Arch. Ration. Mech. Anal. 43 no. 4 (1971), 304-318 | MR 333220 | Zbl 0222.31007