On the “viscous incompressible fluid+rigid body” system with Navier conditions
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 1, p. 55-80
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consulter l'article sur le site de la revue
In this paper we consider the motion of a rigid body in a viscous incompressible fluid when some Navier slip conditions are prescribed on the body's boundary. The whole system “viscous incompressible fluid+rigid body” is assumed to occupy the full space 3 . We start by proving the existence of global weak solutions to the Cauchy problem. Then, we exhibit several properties of these solutions. First, we show that the added-mass effect can be computed which yields better-than-expected regularity (in time) of the solid velocity-field. More precisely we prove that the solid translation and rotation velocities are in the Sobolev space H 1 . Second, we show that the case with the body fixed can be thought as the limit of infinite inertia of this system, that is when the solid density is multiplied by a factor converging to +∞. Finally we prove the convergence in the energy space of weak solutions “à la Leray” to smooth solutions of the system “inviscid incompressible fluid+rigid body” as the viscosity goes to zero, till the lifetime T of the smooth solution of the inviscid system. Moreover we show that the rate of convergence is optimal with respect to the viscosity and that the solid translation and rotation velocities converge in H 1 (0,T).
@article{AIHPC_2014__31_1_55_0,
     author = {Planas, Gabriela and Sueur, Franck},
     title = {On the ``viscous incompressible fluid+rigid body'' system with Navier conditions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {31},
     number = {1},
     year = {2014},
     pages = {55-80},
     doi = {10.1016/j.anihpc.2013.01.004},
     zbl = {1288.35375},
     mrnumber = {3165279},
     language = {en},
     url = {http://http://www.numdam.org/item/AIHPC_2014__31_1_55_0}
}
Planas, Gabriela; Sueur, Franck. On the “viscous incompressible fluid+rigid body” system with Navier conditions. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 1, pp. 55-80. doi : 10.1016/j.anihpc.2013.01.004. http://www.numdam.org/item/AIHPC_2014__31_1_55_0/

[1] C. Bardos, F. Golse, L. Paillard, The incompressible Euler limit of the Boltzmann equation with accommodation boundary condition, Commun. Math. Sci. 10 no. 1 (2012), 159-190 | MR 2901306 | Zbl 1291.35169

[2] C. Bardos, E.S. Titi, Euler equations for an ideal incompressible fluid, Uspekhi Mat. Nauk 62 no. 3(375) (2007), 5-46, Russian Math. Surveys 62 no. 3 (2007), 409-451 | MR 2355417 | Zbl 1139.76010

[3] H. Beirao Da Veiga, F. Crispo, A missed persistence property for the Euler equations, and its effect on inviscid limits, Nonlinearity 25 (2012), 1661-1669 | MR 2924729 | Zbl 1245.35087

[4] T. Chambrion, A. Munnier, Locomotion and control of a self-propelled shape-changing body in a fluid, J. Nonlinear Sci. 21 no. 3 (2011), 325-385 | MR 2823860 | Zbl 1222.74019

[5] M. Chapouly, On the global null controllability of a Navier–Stokes system with Navier slip boundary conditions, J. Differential Equations 247 no. 7 (2009), 2094-2123 | MR 2560050 | Zbl 1178.35285

[6] S. Childress, An Introduction to Theoretical Fluid Mechanics, Courant Lect. Notes Math. vol. 19, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence, RI (2009) | MR 2546940 | Zbl 1309.76001

[7] T. Clopeau, A. Mikelic, R. Robert, On the vanishing viscosity limit for the 2D incompressible Navier–Stokes equations with the friction type boundary conditions, Nonlinearity 11 no. 6 (1998), 1625-1636 | MR 1660366 | Zbl 0911.76014

[8] C. Conca, J.A. San Martin, M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations 25 no. 5–6 (2000), 1019-1042 | Zbl 0954.35135

[9] P. Constantin, On the Euler equations of incompressible fluids, Bull. Amer. Math. Soc. (N.S.) 44 no. 4 (2007), 603-621 | MR 2338368 | Zbl 1132.76009

[10] F. Coron, Derivation of slip boundary conditions for the Navier–Stokes system from the Boltzmann equation, J. Stat. Phys. 54 no. 3–4 (1989), 829-857 | MR 988561 | Zbl 0666.76103

[11] J.-M. Coron, On the controllability of the 2-D incompressible Navier–Stokes equations with the Navier slip boundary conditions, ESAIM Control Optim. Calc. Var. 1 (1995/1996), 35-75 | Numdam | MR 1393067 | Zbl 0872.93040

[12] J.-M. Coron, On the null asymptotic stabilization of the two-dimensional incompressible Euler equations in a simply connected domain, SIAM J. Control Optim. 37 no. 6 (1999), 1874-1896 | MR 1720143 | Zbl 0954.76010

[13] A.-L. Dalibard, D. Gérard-Varet, Effective boundary condition at a rough surface starting from a slip condition, J. Differential Equations 251 no. 12 (2011), 3450-3487 | MR 2837691 | Zbl 1235.35025

[14] B. Desjardins, M.J. Esteban, On weak solutions for fluid–rigid structure interaction: compressible and incompressible models, Comm. Partial Differential Equations 25 no. 7–8 (2000), 1399-1413 | MR 1765138 | Zbl 0953.35118

[15] B. Desjardins, M.J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal. 146 no. 1 (1999), 59-71 | MR 1682663 | Zbl 0943.35063

[16] W. E, Boundary layer theory and the zero-viscosity limit of the Navier–Stokes equation, Acta Math. Sin. (Engl. Ser.) 16 no. 2 (2000), 207-218 | MR 1778702 | Zbl 0961.35101

[17] E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid, J. Evol. Equ. 3 no. 3 (2003), 419-441 | MR 2019028 | Zbl 1039.76071

[18] E. Feireisl, On the motion of rigid bodies in a viscous fluid, Mathematical Theory in Fluid Mechanics Paseky, 2001 Appl. Math. 47 no. 6 (2002), 463-484 | MR 1948192 | Zbl 1090.35137

[19] E. Feireisl, On the motion of rigid bodies in a viscous compressible fluid, Arch. Ration. Mech. Anal. 167 no. 4 (2003), 281-308 | MR 1981859 | Zbl 1090.76061

[20] G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I, Springer, New York (1994) | MR 1284206 | Zbl 0949.35004

[21] D. Gérard-Varet, E. Dormy, On the ill-posedness of the Prandtl equation, J. Amer. Math. Soc. 23 no. 2 (2010), 591-609 | MR 2601044 | Zbl 1197.35204

[22] D. Gérard-Varet, M. Hillairet, Existence of weak solutions up to collision for viscous fluid–solid systems with slip, preprint, 2012, arXiv:1207.0469. | MR 3272367

[23] D. Gérard-Varet, N. Masmoudi, Relevance of the slip condition for fluid flows near an irregular boundary, Comm. Math. Phys. 295 no. 1 (2010), 99-137 | MR 2585993 | Zbl 1193.35130

[24] P. Gamblin, X. Saint Raymond, On three-dimensional vortex patches, Bull. Soc. Math. France 123 no. 3 (1995), 375-424 | Numdam | MR 1373741 | Zbl 0844.76013

[25] O. Glass, C. Lacave, F. Sueur, On the motion of a small body immersed in a two dimensional incompressible perfect fluid, preprint, 2011, arXiv:1104.5404, Bull. Soc. Math. France, in press. | MR 3295721

[26] O. Glass, F. Sueur, On the motion of a rigid body in a two-dimensional irregular ideal flow, SIAM J. Math. Anal. 44 no. 5 (2012), 3101-3126 | MR 3023405 | Zbl 1325.76026

[27] O. Glass, F. Sueur, Low regularity solutions for the two-dimensional “rigid body+incompressible Euler” system, preprint, 2012, hal-00682976. | MR 3200756

[28] O. Glass, F. Sueur, The movement of a solid in an incompressible perfect fluid as a geodesic flow, Proc. Amer. Math. Soc. 140 no. 6 (2012), 2155-2168 | MR 2888201 | Zbl 1261.76009

[29] O. Glass, F. Sueur, Uniqueness results for weak solutions of two-dimensional fluid–solid systems, preprint, 2012, arXiv:1203.2894. | MR 3375542

[30] O. Glass, F. Sueur, T. Takahashi, Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid, Ann. Sci. École Norm. Sup. 45 no. 1 (2012), 1-51 | Numdam | MR 2961786 | Zbl 1311.35217

[31] C. Grandmont, Y. Maday, Existence for an unsteady fluid–structure interaction problem, M2AN Math. Model. Numer. Anal. 34 no. 3 (2000), 609-636 | Numdam | MR 1763528 | Zbl 0969.76017

[32] E. Grenier, Boundary layers, Handbook of Mathematical Fluid Dynamics, vol. III, Elsevier (2004), 245-309 | MR 2099036 | Zbl 1221.76082

[33] Y. Guo, T.T. Nguyen, A note on the Prandtl boundary layers, Comm. Pure Appl. Math. 64 no. 10 (2011), 1416-1438 | MR 2849481 | Zbl 1232.35126

[34] K.-H. Hoffmann, V.N. Starovoitov, On a motion of a solid body in a viscous fluid. Two-dimensional case, Adv. Math. Sci. Appl. 9 no. 2 (1999), 633-648 | MR 1725677 | Zbl 0966.76016

[35] J.-G. Houot, J. San Martin, M. Tucsnak, Existence and uniqueness of solutions for the equations modelling the motion of rigid bodies in a perfect fluid, J. Funct. Anal. 259 no. 11 (2010), 2856-2885 | MR 2719277 | Zbl 1200.35222

[36] D. Iftimie, G. Planas, Inviscid limits for the Navier–Stokes equations with Navier friction boundary conditions, Nonlinearity 19 (2006), 899-918 | MR 2214949 | Zbl 1169.35365

[37] D. Iftimie, F. Sueur, Viscous boundary layers for the Navier–Stokes equations with the Navier slip conditions, Arch. Ration. Mech. Anal. 199 no. 1 (2011), 145-175 | MR 2754340 | Zbl 1229.35184

[38] T. Kato, Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary, Seminar on Nonlinear Partial Differential Equations Math. Sci. Res. Inst. Publ. 2 (1984), 85-98 | MR 765230 | Zbl 0559.35067

[39] N. Masmoudi, F. Rousset, Uniform regularity for the Navier–Stokes equations with Navier boundary condition, Arch. Ration. Mech. Anal. 203 no. 2 (2012), 529-575 | MR 2885569 | Zbl 1286.76026

[40] N. Masmoudi, L. Saint-Raymond, From the Boltzmann equation to the Stokes–Fourier system in a bounded domain, Comm. Pure Appl. Math. 56 no. 9 (2003), 1263-1293 | MR 1980855 | Zbl 1024.35031

[41] W. Mclean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge (2000) | MR 1742312 | Zbl 0948.35001

[42] C.-L. Navier, Mémoire sur les lois du mouvement des fluides, Mem. Acad. R. Sci. Paris 6 (1823), 389-416

[43] J.H. Ortega, L. Rosier, T. Takahashi, Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid, M2AN Math. Model. Numer. Anal. 39 no. 1 (2005), 79-108 | Numdam | MR 2136201 | Zbl 1087.35081

[44] J.H. Ortega, L. Rosier, T. Takahashi, On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 no. 1 (2007), 139-165 | MR 2286562 | Zbl 1168.35038

[45] M. Paddick, Stability and instability of Navier boundary layers, preprint, 2011, arXiv:1103.5009. | MR 3229096

[46] C. Rosier, L. Rosier, Smooth solutions for the motion of a ball in an incompressible perfect fluid, J. Funct. Anal. 256 no. 5 (2009), 1618-1641 | MR 2490232 | Zbl 1173.35105

[47] J.A. San Martin, V. Starovoitov, M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal. 161 no. 2 (2002), 113-147 | MR 1870954 | Zbl 1018.76012

[48] D. Serre, Chute libre d'un solide dans un fluide visqueux incompressible. Existence, Japan J. Appl. Math. 4 no. 1 (1987), 99-110 | MR 899206 | Zbl 0655.76022

[49] J. Simon, Compact sets in L p (0,T;B), Ann. Mat. Pura Appl. (4) CXLVI (1987), 65-96 | MR 916688 | Zbl 0629.46031

[50] F. Sueur, A Kato type theorem for the inviscid limit of the Navier–Stokes equations with a moving rigid body, Comm. Math. Phys. 316 no. 3 (2012), 783-808 | MR 2993933 | Zbl 1253.35106

[51] R. Temam, Problèmes mathématiques en plasticité, Méthodes Mathématiques de l'Informatique vol. 12, Gauthier–Villars (1983) | MR 711964 | Zbl 0547.73026

[52] R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis, Stud. Math. Appl. vol. 2, North-Holland, The Netherlands (1984) | MR 769654 | MR 603444 | Zbl 0568.35002

[53] L. Wang, Z. Xin, A. Zang, Vanishing viscous limits for 3D Navier–Stokes equations with Navier-slip boundary conditions, J. Math. Fluid Mech. 14 no. 4 (2012), 791-825 | MR 2992041 | Zbl 1256.35068

[54] Y. Wang, A. Zang, Smooth solutions for motion of a rigid body of general form in an incompressible perfect fluid, J. Differential Equations 252 (2012), 4259-4288 | MR 2879731 | Zbl 1241.35151