Gelfand type quasilinear elliptic problems with quadratic gradient terms
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 2, pp. 249-265.

In this paper, for $0<{m}_{1}⩽m\left(x\right)⩽{m}_{2}$ and positive parameters λ and p, we study the existence of positive solution for the quasilinear model problem

 $\left\{\begin{array}{cc}-\Delta u+m\left(x\right)\frac{{|\nabla u|}^{2}}{1+u}=\lambda {\left(1+u\right)}^{p}\hfill & \text{in}\phantom{\rule{4pt}{0ex}}\Omega ,\hfill \\ u=0\hfill & \text{on}\phantom{\rule{4pt}{0ex}}\partial \Omega .\hfill \end{array}$
We prove that the maximal set of λ for which the problem has at least one positive solution is an interval $\left(0,{\lambda }^{⁎}\right]$, with ${\lambda }^{⁎}>0$, and there exists a minimal regular positive solution for every $\lambda \in \left(0,{\lambda }^{⁎}\right)$. We also prove, under suitable conditions depending on the dimension N and the parameters p, ${m}_{1}$, ${m}_{2}$, that for $\lambda ={\lambda }^{⁎}$ there exists a minimal regular positive solution. Moreover we characterize minimal solutions as those solutions satisfying a stability condition in the case ${m}_{1}={m}_{2}$.

DOI : https://doi.org/10.1016/j.anihpc.2013.03.002
Mots clés : Gelfand problem, Quasilinear elliptic equations, Quadratic gradient, Stability condition, Extremal solutions
@article{AIHPC_2014__31_2_249_0,
author = {Arcoya, David and Carmona, Jos\'e and Mart\'\i nez-Aparicio, Pedro J.},
title = {Gelfand type quasilinear elliptic problems with quadratic gradient terms},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {249--265},
publisher = {Elsevier},
volume = {31},
number = {2},
year = {2014},
doi = {10.1016/j.anihpc.2013.03.002},
zbl = {1300.35044},
mrnumber = {3181668},
language = {en},
url = {http://archive.numdam.org/item/AIHPC_2014__31_2_249_0/}
}
Arcoya, David; Carmona, José; Martínez-Aparicio, Pedro J. Gelfand type quasilinear elliptic problems with quadratic gradient terms. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 2, pp. 249-265. doi : 10.1016/j.anihpc.2013.03.002. http://archive.numdam.org/item/AIHPC_2014__31_2_249_0/

 D. Arcoya, J. Carmona, P.J. Martínez-Aparicio, Radial solutions for a Gelfand type quasilinear elliptic problem with quadratic gradient terms, Contemp. Math., to appear. | MR 3155963

 D. Arcoya, J. Carmona, P.J. Martínez-Aparicio, Bifurcation for quasilinear elliptic singular BVP, Comm. Partial Differential Equations 36 (2011), 1-23 | MR 2763328 | Zbl 1239.35046

 D. Arcoya, S. Segura De León, Uniqueness of solutions for some elliptic equations with a quadratic gradient term, ESAIM Control Optim. Calc. Var. 2 (2010), 327-336 | EuDML 250798 | Numdam | MR 2654196 | Zbl 1189.35109

 C. Bandle, Sur un problème de Dirichlet non linéaire, C. R. Acad. Sci. Paris 276 (1973), 1155-1157 | MR 316888 | Zbl 0249.35031

 G. Barles, A.P. Blanc, C. Georgelin, M. Kobylanski, Remarks on the maximum principle for nonlinear elliptic PDEs with quadratic growth conditions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 28 no. 3 (1999), 381-404 | EuDML 84382 | Numdam | Zbl 0940.35078

 G. Barles, F. Murat, Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions, Arch. Ration. Mech. Anal. 133 (1995), 77-101 | MR 1367357 | Zbl 0859.35031

 L. Boccardo, Dirichlet problems with singular and quadratic gradient lower order terms, ESAIM Control Optim. Calc. Var. 14 (2008), 411-426 | EuDML 250307 | Numdam | MR 2434059 | Zbl 1147.35034

 L. Boccardo, F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992), 581-597 | MR 1183665 | Zbl 0783.35020

 L. Boccardo, F. Murat, J.P. Puel, Existence de solutions non bornees pour certaines équations quasi-linéaires, Port. Math. 41 (1982), 507-534 | EuDML 115517 | MR 766873 | Zbl 0524.35041

 L. Boccardo, F. Murat, J.P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl. (4) 152 (1988), 183-196 | MR 980979 | Zbl 0687.35042

 L. Boccardo, L. Orsina, M.M. Porzio, Existence results for quasilinear elliptic and parabolic problems with quadratic gradient terms and sources, Adv. Calc. Var. 4 no. 4 (2011), 397-419 | MR 2844511 | Zbl 1232.35068

 H. Brezis, T. Cazenave, Y. Martel, A. Ramiandrisoa, Blow up for ${u}_{t}-\Delta u=g\left(u\right)$ revisited, Adv. Differential Equations 1 (1996), 73-90 | MR 1357955 | Zbl 0855.35063

 H. Brezis, J.L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 no. 2 (1997), 443-469 | EuDML 44278 | MR 1605678 | Zbl 0894.35038

 X. Cabré, Regularity of minimizers of semilinear elliptic problems up to dimension 4, Comm. Pure Appl. Math. 63 no. 10 (2010), 1362-1380 | MR 2681476 | Zbl 1198.35094

 M. Crandall, P.H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Ration. Mech. Anal. 58 no. 3 (1975), 207-218 | MR 382848 | Zbl 0309.35057

 L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. vol. 143, Chapman and Hall/CRC (2011) | MR 2779463 | Zbl 1228.35004

 J. García Azorero, I. Peral, J.P. Puel, Quasilinear problems with exponential growth in the reaction term, Nonlinear Anal. 22 no. 4 (1994), 481-498 | MR 1266373 | Zbl 0804.35037

 I.M. Gelfand, Some problems in the theory of quasi-linear equations, Amer. Math. Soc. Transl. 29 no. 2 (1963), 295-381 | MR 153960 | Zbl 0127.04901

 D.D. Joseph, T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Ration. Mech. Anal. 49 (1972/1973), 241-269 | MR 340701 | Zbl 0266.34021

 H.B. Keller, D.S. Cohen, Some positone problems suggested by nonlinear heat generation, J. Math. Mech. 16 (1967), 1361-1376 | MR 213694 | Zbl 0152.10401

 F. Mignot, J.P. Puel, Sur une classe de problèmes nonlinéaires avec nonlinéarité positive, croissante, convexe, Comm. Partial Differential Equations 5 (1980), 791-836 | MR 583604 | Zbl 0456.35034

 L. Orsina, J.P. Puel, Positive solutions for a class of nonlinear elliptic problems involving quasilinear and semilinear terms, Comm. Partial Differential Equations 26 (2001), 1665-1689 | MR 1865941 | Zbl 1242.35126

 G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus, Les Presses de l'Université de Montréal, Montréal (1966) | MR 251373 | Zbl 0151.15501