We establish global existence for the energy-critical nonlinear Schrödinger equation on . This follows similar lines to the work on but requires new extinction results for linear solutions and bounds on the interaction of a Euclidean profile and a linear wave of much higher frequency that are adapted to the new geometry.
@article{AIHPC_2014__31_2_315_0, author = {Pausader, Benoit and Tzvetkov, Nikolay and Wang, Xuecheng}, title = {Global regularity for the energy-critical {NLS} on $ {\mathbb{S}}^{3}$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {315--338}, publisher = {Elsevier}, volume = {31}, number = {2}, year = {2014}, doi = {10.1016/j.anihpc.2013.03.006}, mrnumber = {3181672}, zbl = {1307.35285}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2013.03.006/} }
TY - JOUR AU - Pausader, Benoit AU - Tzvetkov, Nikolay AU - Wang, Xuecheng TI - Global regularity for the energy-critical NLS on $ {\mathbb{S}}^{3}$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 315 EP - 338 VL - 31 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2013.03.006/ DO - 10.1016/j.anihpc.2013.03.006 LA - en ID - AIHPC_2014__31_2_315_0 ER -
%0 Journal Article %A Pausader, Benoit %A Tzvetkov, Nikolay %A Wang, Xuecheng %T Global regularity for the energy-critical NLS on $ {\mathbb{S}}^{3}$ %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 315-338 %V 31 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2013.03.006/ %R 10.1016/j.anihpc.2013.03.006 %G en %F AIHPC_2014__31_2_315_0
Pausader, Benoit; Tzvetkov, Nikolay; Wang, Xuecheng. Global regularity for the energy-critical NLS on $ {\mathbb{S}}^{3}$. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 2, pp. 315-338. doi : 10.1016/j.anihpc.2013.03.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2013.03.006/
[1] Loss of regularity for super-critical nonlinear Schrödinger equations, Math. Ann. 343 (2009), 397-420 | MR | Zbl
, ,[2] The dynamics of the Schrödinger flow from the point of view of semiclassical measures, Spectral Geometry, Proc. Sympos. Pure Math. vol. 84, Amer. Math. Soc., Providence, RI (2012), 93-116 | MR | Zbl
, ,[3] Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains, Bull. Soc. Math. France 136 no. 1 (2008), 27-65 | EuDML | Numdam | MR | Zbl
,[4] Cubic nonlinear Schrödinger equation on three dimensional balls with radial data, Comm. Partial Differential Equations 33 no. 10–12 (2008), 1862-1889 | MR | Zbl
,[5] The nonlinear Schrödinger equation on hyperbolic space, Comm. Partial Differential Equations 32 no. 10 (2007), 1643-1677 | MR | Zbl
,[6] On scattering for NLS: from Euclidean to hyperbolic space, Discrete Contin. Dyn. Syst. 24 no. 4 (2009), 1113-1127 | MR | Zbl
, , ,[7] High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math. 121 no. 1 (1999), 131-175 | MR | Zbl
, ,[8] Dispersion for the Schrödinger equation on networks, J. Math. Phys. 52 (2011), 083703 | MR | Zbl
, ,[9] On Strichartz estimates for Schrödinger operators in compact manifolds with boundary, Proc. Amer. Math. Soc. 136 (2008), 247-256 | MR | Zbl
, , ,[10] Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary, Math. Ann. 354 (2012), 1397-1430, http://dx.doi.org/10.1007/s00208-011-0772-y | MR | Zbl
, , ,[11] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), 107-156 | EuDML | MR | Zbl
,[12] Exponential sums and nonlinear Schrödinger equations, Geom. Funct. Anal. 3 (1993), 157-178 | EuDML | MR | Zbl
,[13] Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc. 12 (1999), 145-171 | MR | Zbl
,[14] Moment inequalities for trigonometric polynomials with spectrum in curved hypersurfaces, arXiv:1107.1129 | MR | Zbl
,[15] Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math. 126 (2004), 569-605 | MR | Zbl
, , ,[16] Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations, Ann. Sci. École Norm. Sup. (4) 38 no. 2 (2005), 255-301 | EuDML | Numdam | MR | Zbl
, , ,[17] Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math. 159 (2005), 187-223 | MR | Zbl
, , ,[18] Global solutions for the nonlinear Schrödinger equation on three-dimensional compact manifolds, Mathematical Aspects of Nonlinear Dispersive Equations, Ann. of Math. Stud. vol. 163, Princeton Univ. Press, Princeton, NJ (2007), 111-129 | MR | Zbl
, , ,[19] Semilinear Schrödinger Equations, Courant Lect. Notes Math. vol. 10, New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence, RI (2003) | MR | Zbl
,[20] Ill-posedness for nonlinear Schrodinger and wave equations, Ann. Inst. H. Poincaré (2013), arXiv:math/0311048
, , ,[21] Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in , Ann. of Math. 167 (2008), 767-865 | MR | Zbl
, , , , ,[22] Global well-posedness and scattering for the defocusing, energy-critical, nonlinear Schrödinger equation in the exterior of a convex obstacle when , arXiv:1112.0710
,[23] Nonlinear Schrödinger equation on four-dimensional compact manifolds, Bull. Soc. Math. France 138 (2010), 119-151 | EuDML | Numdam | MR | Zbl
, ,[24] On nonlinear Schrödinger equations, Comm. Partial Differential Equations 25 (2000), 1827-1844 | MR | Zbl
,[25] Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 no. 3 (2009), 917-941, http://dx.doi.org/10.1016/j.anihpc.2010.01.006 | EuDML | Numdam | Zbl
, , ,[26] Global well-posedness of the cubic nonlinear Schrödinger equation on compact manifolds without boundary, Anal. PDE 5 no. 2 (2012), 339-363 | MR
,[27] On scattering for the quintic defocusing nonlinear Schrödinger equation on , Comm. Pure Appl. Math. (2013) | MR
, ,[28] The quintic nonlinear Schrödinger equation on three-dimensional Zoll manifolds, Amer. J. Math. (2013) | MR | Zbl
,[29] Global well-posedness of the energy critical nonlinear Schrödinger equation with small initial data in , Duke Math. J. 159 no. 2 (2011), 329-349 | Zbl
, , ,[30] Strichartz estimates for partially periodic solutions to Schrödinger equations in 4d and applications, J. Reine Angew. Math. (2013), http://dx.doi.org/10.1515/crelle-2012-0013 | MR | Zbl
, , ,[31] On the global well-posedness of energy-critical Schrödinger equations in curved spaces, Anal. PDE 5 no. 4 (2012), 705-746 | MR | Zbl
, , ,[32] Global wellposedness of the energy-critical defocusing NLS on , Comm. Math. Phys. 312 no. 3 (2012), 781-831 | MR | Zbl
, ,[33] The energy-critical defocusing NLS on , Duke Math. J. 161 no. 8 (2012), 1581-1612 | MR | Zbl
, ,[34] On the energy critical Schrödinger equation in 3D non-trapping domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 no. 5 (2010), 1153-1177 | Numdam | MR | Zbl
, ,[35] On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations 175 (2001), 353-392 | MR | Zbl
,[36] Global well-posedness and scattering for the defocusing quintic NLS in three dimensions, Anal. PDE 5 no. 4 (2012), 855-885, http://dx.doi.org/10.2140/apde.2012.5.855 | MR | Zbl
, ,[37] Quintic NLS in the exterior of a strictly convex obstacle, arXiv:1208.4904 | MR | Zbl
, , ,[38] Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math. 166 (2006), 645-675 | MR | Zbl
, ,[39] Dispersive estimates for principally normal pseudo-differential operators, Comm. Pure Appl. Math. 58 no. 2 (2005), 217-284 | MR | Zbl
, ,[40] Global well-posedness and scattering for defocusing energy-critical NLS in the exterior of balls with radial data, arXiv:1109.4194 | MR | Zbl
, , ,[41] Compactness at blow-up time for solutions of the critical nonlinear Schrödinger equation in 2D, Int. Math. Res. Not. 1998 no. 8 (1998), 399-425 | MR | Zbl
, ,[42] On the cubic NLS on 3D compact domains, J. Inst. Math. Jussieu 2 (2013), 1-18 | MR | Zbl
,[43] Oscillatory integrals and spherical harmonics, Duke Math. J. 53 no. 1 (1986), 43-65 | MR | Zbl
,[44] Concerning the norm of spectral clusters for second order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988), 123-138 | MR | Zbl
,[45] Kakeya–Nikodym averages and -norms of eigenfunctions, Tohoku Math. J. (2) 63 no. 4 (2011), 519-538 | MR | Zbl
,[46] On 2D nonlinear Schrödinger equations with data on , J. Funct. Anal. 182 no. 2 (2001), 427-442 | MR | Zbl
, ,[47] Small data scattering for the nonlinear Schrödinger equation on product spaces, Comm. Partial Differential Equations 37 (2012), 125-135 | MR | Zbl
, ,Cité par Sources :