Flowing maps to minimal surfaces: Existence and uniqueness of solutions
Annales de l'I.H.P. Analyse non linéaire, Volume 31 (2014) no. 2, p. 349-368
The full text of recent articles is available to journal subscribers only. See the article on the journal's website
We study the new geometric flow that was introduced in the paper [12] of Topping and the author that evolves a pair of map and (domain) metric in such a way that it changes appropriate initial data into branched minimal immersions. In the present paper we focus on the existence theory as well as the issue of uniqueness of solutions. We establish that a (weak) solution exists for as long as the metrics remain in a bounded region of moduli space, i.e. as long as the flow does not collapse a closed geodesic in the domain manifold to a point. Furthermore, we prove that this solution is unique in the class of all weak solutions with non-increasing energy. This work complements the paper of Topping and the author [12] where the flow was introduced and its asymptotic convergence to branched minimal immersions is discussed.
Nous étudions le nouveau flot géométrique introduit dans l'article [12] de Topping et de l'auteure, qui transforme un couple formé d'une application d'une surface vers une variété riemannienne et d'une métrique riemannienne du domaine. Ce flot change des données initiales appropriées en des immersions minimales ramifiées. Nous prouvons qu'une solution faible existe tant que le flot ne contracte pas une géodésique fermée du domaine en un point. De plus, nous montrons que cette solution est unique dans la classe des solutions faibles avec énergie décroissante. Ce travail complète l'article de Topping et de l'auteure [12] où le flot est introduit et où sa convergence asymptotique est étudiée.
@article{AIHPC_2014__31_2_349_0,
     author = {Rupflin, Melanie},
     title = {Flowing maps to minimal surfaces: Existence and uniqueness of solutions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {31},
     number = {2},
     year = {2014},
     pages = {349-368},
     doi = {10.1016/j.anihpc.2013.03.008},
     zbl = {1301.53008},
     mrnumber = {3181674},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2014__31_2_349_0}
}
Rupflin, Melanie. Flowing maps to minimal surfaces: Existence and uniqueness of solutions. Annales de l'I.H.P. Analyse non linéaire, Volume 31 (2014) no. 2, pp. 349-368. doi : 10.1016/j.anihpc.2013.03.008. http://www.numdam.org/item/AIHPC_2014__31_2_349_0/

[1] W. Ding, J. Li, Q. Liu, Evolution of minimal torus in Riemannian manifolds, Invent. Math. 165 (2006), 225-242 | MR 2231956 | Zbl 1109.53066

[2] W.Y. Ding, G. Tian, Energy identity for a class of approximate harmonic maps from surfaces, Comm. Anal. Geom. 3 no. 3–4 (1995), 543-554 | MR 1371209 | Zbl 0855.58016

[3] J. Eells, H.J. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 no. 1 (1964), 109-160 | MR 164306 | Zbl 0122.40102

[4] A. Freire, Uniqueness of the harmonic map flow from surfaces to general targets, Comment. Math. Helv. 70 no. 1 (1995), 310-338 | MR 1324632 | Zbl 0831.58018

[5] A. Freire, Uniqueness of the harmonic map flow in two dimensions, Calc. Var. 3 no. 1 (1995), 95-105 | MR 1384838 | Zbl 0814.35057

[6] R.D. Gulliver, R. Osserman, H.L. Roydon, A theory of branched immersions of surfaces, Amer. J. Math. 95 (1973), 750-812 | MR 362153 | Zbl 0295.53002

[7] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Interscience Publishers (1963) | Zbl 0119.37502

[8] G. Lieberman, Second Order Parabolic Differential Equations, World Scientific (1996) | MR 1465184 | Zbl 0884.35001

[9] F. Lin, C. Wang, The Analysis of Harmonic Maps and Their Heat Flows, World Scientific (2008) | MR 2431658

[10] R. Moser, Regularity for the approximated harmonic map equation and application to the heat flow for harmonic maps, Math. Z. 243 no. 2 (2003), 263-289 | MR 1961867 | Zbl 1027.58014

[11] M. Rupflin, An improved uniqueness result for the harmonic map flow in two dimensions, Calc. Var. 33 no. 3 (2008), 329-341 | MR 2429534 | Zbl 1157.58004

[12] M. Rupflin, P. Topping, Flowing maps to minimal surfaces, arXiv:1205.6298 (2012) | MR 3538152 | Zbl 1357.53018 | Zbl 06618777

[13] M. Rupflin, P. Topping, M. Zhu, Asymptotics of the Teichmüller harmonic map flow, arXiv:1209.3783 (2012) | MR 3077891 | Zbl 1288.32018

[14] J. Sacks, K. Uhlenbeck, Minimal immersions of closed Riemann surfaces, Trans. Amer. Math. Soc. 271 (1982), 639-652 | MR 654854 | Zbl 0527.58008

[15] R. Schoen, S.T. Yau, Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature, Ann. of Math. 110 (1979), 127-142 | MR 541332 | Zbl 0431.53051

[16] M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985), 558-581 | MR 826871 | Zbl 0595.58013

[17] P. Topping, Reverse bubbling and nonuniqueness in the harmonic map flow, Int. Math. Res. Not. 10 (2002), 558-581 | MR 1883901 | Zbl 1003.58014

[18] Tromba, Teichmüller Theory in Riemannian Geometry, Lectures Math. ETH Zürich, Birkhäuser (1992) | MR 1164870 | Zbl 0785.53001