Conditions at infinity for the inhomogeneous filtration equation
Annales de l'I.H.P. Analyse non linéaire, Volume 31 (2014) no. 2, p. 413-428
The full text of recent articles is available to journal subscribers only. See the article on the journal's website
We investigate existence and uniqueness of solutions to the filtration equation with an inhomogeneous density in N (N3), approaching at infinity a given continuous datum of Dirichlet type.
@article{AIHPC_2014__31_2_413_0,
     author = {Grillo, Gabriele and Muratori, Matteo and Punzo, Fabio},
     title = {Conditions at infinity for the inhomogeneous filtration equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {31},
     number = {2},
     year = {2014},
     pages = {413-428},
     doi = {10.1016/j.anihpc.2013.04.002},
     zbl = {1302.35193},
     mrnumber = {3181677},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2014__31_2_413_0}
}
Grillo, Gabriele; Muratori, Matteo; Punzo, Fabio. Conditions at infinity for the inhomogeneous filtration equation. Annales de l'I.H.P. Analyse non linéaire, Volume 31 (2014) no. 2, pp. 413-428. doi : 10.1016/j.anihpc.2013.04.002. http://www.numdam.org/item/AIHPC_2014__31_2_413_0/

[1] D. Aronson, M.C. Crandall, L.A. Peletier, Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal. TMA 6 (1982), 1001-1022 | MR 678053 | Zbl 0518.35050

[2] E. Di Benedetto, Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J. 32 (1983), 83-118 | MR 684758

[3] E. Di Benedetto, A boundary modulus of continuity for a class of singular parabolic equations, J. Differential Equations 63 (1986), 418-447 | MR 848277

[4] J. Dolbeault, I. Gentil, A. Guillin, F.-Y. Wang, L q -functional inequalities and weighted porous media equations, Potential Anal. 28 (2008), 35-59 | MR 2366398 | Zbl 1148.26018

[5] J. Dolbeault, B. Nazaret, G. Savaré, On the Bakry–Emery criterion for linear diffusions and weighted porous media equations, Commun. Math. Sci. 6 (2008), 477-494 | MR 2435196 | Zbl 1149.35330

[6] D. Eidus, The Cauchy problem for the nonlinear filtration equation in an inhomogeneous medium, J. Differential Equations 84 (1990), 309-318 | MR 1047572 | Zbl 0707.35074

[7] D. Eidus, S. Kamin, The filtration equation in a class of functions decreasing at infinity, Proc. Amer. Math. Soc. 120 (1994), 825-830 | MR 1169025 | Zbl 0791.35065

[8] G. Grillo, M. Muratori, Sharp short and long time L bounds for solutions to porous media equations with Neumann boundary conditions, J. Differential Equations 254 (2013), 2261-2288 | MR 3007111 | Zbl 1270.35146

[9] G. Grillo, M. Muratori, M.M. Porzio, Porous media equations with two weights: existence, uniqueness, smoothing and decay properties of energy solutions via Poincaré inequalities, Discrete Contin. Dyn. Syst. Ser. A 33 (2013), 3599-3640 | MR 3021373 | Zbl 1277.35217

[10] M. Guedda, D. Hilhorst, M.A. Peletier, Disappearing interfaces in nonlinear diffusion, Adv. Math. Sci. Appl. 7 (1997), 695-710 | MR 1476273 | Zbl 0891.35071

[11] S. Kamin, G. Reyes, J.L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with rapidly decaying density, Discrete Contin. Dyn. Syst. 26 (2010), 521-549 | MR 2556497 | Zbl 1196.35052

[12] S. Kamin, M.A. Pozio, A. Tesei, Admissible conditions for parabolic equations degenerating at infinity, St. Petersburg Math. J. 19 (2008), 239-251 | MR 2333899 | Zbl 1152.35413

[13] S. Kamin, P. Rosenau, Propagation of thermal waves in an inhomogeneous medium, Comm. Pure Appl. Math. 34 (1981), 831-852 | MR 634287 | Zbl 0458.35042

[14] S. Kamin, P. Rosenau, Non-linear diffusion in a finite mass medium, Comm. Pure Appl. Math. 35 (1982), 113-127 | MR 637497 | Zbl 0469.35060

[15] O.A. Ladyzhenskaya, V.A. Solonnikov, N.A. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Mocow (1967), Transl. Math. Monogr. vol. 23, AMS, Providence (1968) | MR 241822 | Zbl 0164.12302

[16] F. Punzo, On the Cauchy problem for nonlinear parabolic equations with variable density, J. Evol. Equ. 9 (2009), 429-447 | MR 2529731 | Zbl 1239.35078

[17] F. Punzo, Uniqueness and nonuniqueness of bounded solutions to singular nonlinear parabolic equations, Nonlinear Anal. TMA 70 (2009), 3020-3029 | MR 2509388 | Zbl 1170.35463

[18] F. Punzo, On support of solutions to singular nonlinear parabolic equations in bounded domains, Interfaces Free Bound. 13 (2011), 397-410 | MR 2846017 | Zbl 1230.35008

[19] F. Punzo, Uniqueness and support properties of solutions to singular quasilinear parabolic equations on surfaces of revolution, Ann. Mat. Pura Appl. 191 (2012), 311-338 | MR 2909801 | Zbl 1298.35111

[20] F. Punzo, Uniqueness and nonuniqueness of solutions to quasilinear parabolic equations with a singular coefficient on weighted Riemannian manifolds, Asymptot. Anal. 79 (2012), 273-301 | MR 3025894 | Zbl 1252.35010

[21] G. Reyes, J.L. Vazquez, The Cauchy problem for the inhomogeneous porous medium equation, Netw. Heterog. Media 2 (2006), 337-351 | MR 2223075 | Zbl 1124.35035

[22] G. Reyes, J.L. Vázquez, The inhomogeneous PME in several space dimensions. Existence and uniqueness of finite energy solutions, Commun. Pure Appl. Anal. 7 (2008), 1275-1294 | MR 2425009

[23] G. Reyes, J.L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with slowly decaying density, Commun. Pure Appl. Anal. 8 (2009), 493-508 | MR 2461559 | Zbl 1169.35313

[24] J.L. Vázquez, The Porous Medium Equation. Mathematical Theory, The Clarendon Press, Oxford University Press, Oxford (2007) | MR 2286292