Well-posedness for Hall-magnetohydrodynamics
Annales de l'I.H.P. Analyse non linéaire, Volume 31 (2014) no. 3, p. 555-565
The full text of recent articles is available to journal subscribers only. See the article on the journal's website
We prove local existence of smooth solutions for large data and global smooth solutions for small data to the incompressible, resistive, viscous or inviscid Hall-MHD model. We also show a Liouville theorem for the stationary solutions.
DOI : https://doi.org/10.1016/j.anihpc.2013.04.006
Classification:  35L60,  35K55,  35Q80
Keywords: Hall-MHD, Smooth solutions, Well-posedness, Liouville theorem
@article{AIHPC_2014__31_3_555_0,
     author = {Chae, Dongho and Degond, Pierre and Liu, Jian-Guo},
     title = {Well-posedness for Hall-magnetohydrodynamics},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {31},
     number = {3},
     year = {2014},
     pages = {555-565},
     doi = {10.1016/j.anihpc.2013.04.006},
     zbl = {1297.35064},
     mrnumber = {3208454},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2014__31_3_555_0}
}
Chae, Dongho; Degond, Pierre; Liu, Jian-Guo. Well-posedness for Hall-magnetohydrodynamics. Annales de l'I.H.P. Analyse non linéaire, Volume 31 (2014) no. 3, pp. 555-565. doi : 10.1016/j.anihpc.2013.04.006. http://www.numdam.org/item/AIHPC_2014__31_3_555_0/

[1] M. Acheritogaray, P. Degond, A. Frouvelle, J.-G. Liu, Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system, Kinet. Relat. Models 4 (2011), 901 -918 | MR 2861579 | Zbl 1251.35076

[2] S.A. Balbus, C. Terquem, Linear analysis of the Hall effect in protostellar disks, Astrophys. J. 552 (2001), 235 -247

[3] L.M.B.C. Campos, On hydromagnetic waves in atmospheres with application to the sun, Theor. Comput. Fluid Dyn. 10 (1998), 37 -70 | Zbl 0911.76099

[4] F. Charles, B. Després, B. Perthame, R. Sentis, Nonlinear stability of a Vlasov equation for magnetic plasmas, Kinet. Relat. Models 6 (2013), 269 -290 | MR 3030713 | Zbl 1262.35197

[5] J.-Y. Chemin, Perfect Incompressible Fluids, Clarendon Press, Oxford (1998) | MR 1688875

[6] G. Duvaut, J.L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal. 46 (1972), 241 -279 | MR 346289 | Zbl 0264.73027

[7] T.G. Forbes, Magnetic reconnection in solar flares, Geophys. Astrophys. Fluid Dyn. 62 (1991), 15 -36

[8] G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. II, Springer (1994) | MR 1284206 | Zbl 0949.35005

[9] H. Homann, R. Grauer, Bifurcation analysis of magnetic reconnection in Hall-MHD systems, Phys. D 208 (2005), 59 -72 | MR 2167907 | Zbl 1154.76392

[10] M.J. Lighthill, Studies on magneto-hydrodynamic waves and other anisotropic wave motions, Philos. Trans. R. Soc. Lond. Ser. A 252 (1960), 397 -430 | MR 148337 | Zbl 0097.20806

[11] A.J. Majda, A.L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press (2001) | MR 1867882

[12] P.D. Mininni, D.O. Gòmez, S.M. Mahajan, Dynamo action in magnetohydrodynamics and Hall magnetohydrodynamics, Astrophys. J. 587 (2003), 472 -481

[13] J.M. Polygiannakis, X. Moussas, A review of magneto-vorticity induction in Hall-MHD plasmas, Plasma Phys. Control. Fusion 43 (2001), 195 -221

[14] D.A. Shalybkov, V.A. Urpin, The Hall effect and the decay of magnetic fields, Astron. Astrophys. (1997), 685 -690

[15] M.E. Taylor, Tools for PDE. Pseudodifferential Operators, Paradifferential Operators and Layer Potentials, American Mathematical Society (2000) | MR 1766415 | Zbl 0963.35211

[16] H. Triebel, Theory of Function Spaces I, Birkhäuser Basel (1983) | MR 781540

[17] M. Wardle, Star formation and the Hall effect, Astrophys. Space Sci. 292 (2004), 317 -323