Existence of immersed spheres minimizing curvature functionals in non-compact 3-manifolds
Annales de l'I.H.P. Analyse non linéaire, Volume 31 (2014) no. 4, p. 707-724
The full text of recent articles is available to journal subscribers only. See the article on the journal's website
We study curvature functionals for immersed 2-spheres in non-compact, three-dimensional Riemannian manifold $\left(M,h\right)$ without boundary. First, under the assumption that $\left(M,h\right)$ is the euclidean 3-space endowed with a semi-perturbed metric with perturbation small in ${C}^{1}$ norm and of compact support, we prove that if there is some point $\overline{x}\in M$ with scalar curvature ${R}^{M}\left(\overline{x}\right)>0$ then there exists a smooth embedding $f:{𝕊}^{2}↪M$ minimizing the Willmore functional $\frac{1}{4}\int {|H|}^{2}$, where H is the mean curvature. Second, assuming that $\left(M,h\right)$ is of bounded geometry (i.e. bounded sectional curvature and strictly positive injectivity radius) and asymptotically euclidean or hyperbolic we prove that if there is some point $\overline{x}\in M$ with scalar curvature ${R}^{M}\left(\overline{x}\right)>6$ then there exists a smooth immersion $f:{𝕊}^{2}↪M$ minimizing the functional $\int \left(\frac{1}{2}{|A|}^{2}+1\right)$, where A is the second fundamental form. Finally, adding the bound ${K}^{M}⩽2$ to the last assumptions, we obtain a smooth minimizer $f:{𝕊}^{2}↪M$ for the functional $\int \left(\frac{1}{4}{|H|}^{2}+1\right)$. The assumptions of the last two theorems are satisfied in a large class of 3-manifolds arising as spacelike timeslices solutions of the Einstein vacuum equation in case of null or negative cosmological constant.
DOI : https://doi.org/10.1016/j.anihpc.2013.07.002
Classification:  53C21,  53C42,  58E99,  35J60
Keywords: ${L}^{2}$ second fundamental form, Willmore functional, Direct methods in the calculus of variations, Geometric measure theory, General Relativity
@article{AIHPC_2014__31_4_707_0,
author = {Mondino, Andrea and Schygulla, Johannes},
title = {Existence of immersed spheres minimizing curvature functionals in non-compact 3-manifolds},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
publisher = {Elsevier},
volume = {31},
number = {4},
year = {2014},
pages = {707-724},
doi = {10.1016/j.anihpc.2013.07.002},
zbl = {1300.53042},
mrnumber = {3249810},
language = {en},
url = {http://www.numdam.org/item/AIHPC_2014__31_4_707_0}
}

Mondino, Andrea; Schygulla, Johannes. Existence of immersed spheres minimizing curvature functionals in non-compact 3-manifolds. Annales de l'I.H.P. Analyse non linéaire, Volume 31 (2014) no. 4, pp. 707-724. doi : 10.1016/j.anihpc.2013.07.002. http://www.numdam.org/item/AIHPC_2014__31_4_707_0/

[1] A. Ambrosetti, A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Camb. Stud. Adv. Math. , Cambridge Univ. Press (2007) | MR 2292344 | Zbl 1125.47052

[2] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer (2001) | MR 1814364 | Zbl 0691.35001

[3] E. Kuwert, A. Mondino, J. Schygulla, Existence of immersed spheres minimizing curvature functionals in compact 3-manifolds, arXiv:1111.4893 (2011) | MR 3201902 | Zbl 1295.53028

[4] E. Kuwert, R. Schätzle, Removability of isolated singularities of Willmore surfaces, Ann. Math. 160 no. 1 (2004), 315 -357 | MR 2119722 | Zbl 1078.53007

[5] T. Lamm, J. Metzger, Small surfaces of Willmore type in Riemannian manifolds, Int. Math. Res. Not. IMRN 19 (2010), 3786 -3813 | MR 2725514 | Zbl 1202.53056

[6] T. Lamm, J. Metzger, F. Schulze, Foliations of asymptotically flat manifolds by surfaces of Willmore type, Math. Ann. 350 (2011), 1 -78 | MR 2785762 | Zbl 1222.53028

[7] J.M. Lee, T.H. Parker, The Yamabe problem, Bull., New Ser., Am. Math. Soc. 17 no. 1 (July 1987), 37 -91 | MR 888880

[8] P. Li, S.T. Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue on compact surfaces, Invent. Math. 69 (1982), 269 -291 | MR 674407 | Zbl 0503.53042

[9] F. Link, PhD thesis, in preparation.

[10] A. Mondino, Some results about the existence of critical points for the Willmore functional, Math. Zeit. 266 no. 3 (2010), 583 -622 | MR 2719422 | Zbl 1205.53046

[11] A. Mondino, The conformal Willmore Functional: a perturbative approach, J. Geom. Anal. (24 September 2011), 1 -48 | MR 3023857

[12] A. Neves, G. Tian, Existence and uniqueness of constant mean curvature foliation of asymptotically hyperbolic 3-manifolds, Geom. Funct. Anal. 19 (2009), 910 -942 | MR 2563773 | Zbl 1187.53027

[13] T. Rivière, Analysis aspects of Willmore surfaces, Invent. Math. 174 no. 1 (2008), 1 -45 | MR 2430975 | Zbl 1155.53031

[14] R. Schoen, S.T. Yau, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys. 65 (1979), 45 -76 | MR 526976 | Zbl 0405.53045

[15] J. Schygulla, Willmore minimizers with prescribed isoperimetric ratio, Arch. Ration. Mech. Anal. 203 no. 3 (2012), 901 -941 | MR 2928137 | Zbl 1288.74027

[16] L. Simon, Existence of surfaces minimizing the Willmore functional, Commun. Anal. Geom. 1 no. 2 (1993), 281 -325 | MR 1243525 | Zbl 0848.58012

[17] L. Simon, Lectures on Geometric Measure Theory, Proc. Centre Math. Anal. Austral. Nat. Univ. vol. 3 , Austral. Nat. Univ., Canberra, Australia (1983) | MR 756417 | Zbl 0546.49019

[18] T.J. Willmore, Riemannian Geometry, Oxford Sci. Publ. , Oxford University Press (1993) | MR 1261641 | Zbl 0797.53002