@article{AIHPC_2014__31_4_751_0, author = {Duan, Renjun}, title = {Global smooth dynamics of a fully ionized plasma with long-range collisions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, publisher = {Elsevier}, volume = {31}, number = {4}, year = {2014}, pages = {751-778}, doi = {10.1016/j.anihpc.2013.07.004}, zbl = {1305.82057}, mrnumber = {3249812}, language = {en}, url = {http://www.numdam.org/item/AIHPC_2014__31_4_751_0} }

Duan, Renjun. Global smooth dynamics of a fully ionized plasma with long-range collisions. Annales de l'I.H.P. Analyse non linéaire, Volume 31 (2014) no. 4, pp. 751-778. doi : 10.1016/j.anihpc.2013.07.004. http://www.numdam.org/item/AIHPC_2014__31_4_751_0/

[1] On the Landau approximation in plasma physics, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 no. 1 (2004), 61 -95 | Numdam | MR 2037247 | Zbl 1044.83007

, ,[2] Dispersion relations for the linearized Fokker–Planck equation, Arch. Ration. Mech. Anal. 138 no. 2 (1997), 137 -167 | MR 1463805 | Zbl 0888.35084

, ,[3] On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation, Invent. Math. 159 no. 2 (2005), 245 -316 | MR 2116276 | Zbl 1162.82316

, ,[4] Global smooth flows for the compressible Euler–Maxwell system: Relaxation case, J. Hyperbolic Differ. Equ. 8 no. 2 (2011), 375 -413 | MR 2812147 | Zbl 1292.76080

,[5] The Vlasov–Poisson–Boltzmann system in the whole space: The hard potential case, J. Differential Equations 252 (2012), 6356 -6386 | MR 2911838 | Zbl 1247.35174

, , ,[6] The Vlasov–Poisson–Boltzmann system for soft potentials, Math. Models Methods Appl. Sci. 23 no. 6 (2013), 979 -1028 | MR 3037299 | Zbl 06183379

, , ,[7] Global solutions to the Vlasov–Poisson–Landau system, arXiv:1112.3261v1 (2011)

, , ,[8] Optimal time decay of the Vlasov–Poisson–Boltzmann system in ${\mathbf{R}}^{3}$ , Arch. Ration. Mech. Anal. 199 no. 1 (2011), 291 -328 | MR 2754344 | Zbl 1232.35169

, ,[9] Optimal large-time behavior of the Vlasov–Maxwell–Boltzmann system in the whole space, Comm. Pure Appl. Math. 64 no. 11 (2011), 1497 -1546 | MR 2832167 | Zbl 1244.35010

, ,[10] The Landau equation in a periodic box, Comm. Math. Phys. 231 (2002), 391 -434 | MR 1946444 | Zbl 1042.76053

,[11] The Vlasov–Poisson–Landau system in a periodic box, J. Amer. Math. Soc. 25 (2012), 759 -812 | MR 2904573 | Zbl 1251.35167

,[12] The Vlasov–Maxwell–Boltzmann system near Maxwellians, Invent. Math. 153 no. 3 (2003), 593 -630 | MR 2000470 | Zbl 1029.82034

,[13] Collisional Transport in Magnetized Plasmas, Cambridge University Press (2002) | Zbl 1044.76001

, ,[14] Decay property of regularity-loss type and application to some nonlinear hyperbolic-elliptic system, Math. Models Methods Appl. Sci. 16 no. 11 (2006), 1839 -1859 | MR 2271601 | Zbl 1108.35014

, ,[15] On the Cauchy problem of the Boltzmann and Landau equations with soft potentials, Quart. Appl. Math. 65 no. 2 (2007), 281 -315 | MR 2330559 | Zbl 1143.35085

, ,[16] Principles of Plasma Physics, McGraw–Hill (1973)

, ,[17] On Boltzmann and Landau equations, Philos. Trans. Roy. Soc. London Ser. A 346 no. 1679 (1994), 191 -204 | MR 1278244 | Zbl 0809.35137

,[18] Boltzmann equation: micro–macro decompositions and positivity of shock profiles, Commun. Math. Phys. 246 no. 1 (2004), 133 -179 | MR 2044894 | Zbl 1092.82034

, ,[19] The Green's function and large-time behavior of solutions for the one-dimensional Boltzmann equation, Comm. Pure Appl. Math. 57 (2004), 1543 -1608 | MR 2082240 | Zbl 1111.76047

, ,[20] Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations 31 (2006), 1321 -1348 | MR 2254617 | Zbl 1101.76053

,[21] Optimal time decay of the non cut-off Boltzmann equation in the whole space, Kinet. Relat. Models 5 no. 3 (2012), 583 -613 | MR 2972454 | Zbl 06124540

,[22] Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal. 187 (2008), 287 -339 | MR 2366140 | Zbl 1130.76069

, ,[23] Stability of the relativistic Maxwellian in a collisional plasma, Comm. Math. Phys. 251 no. 2 (2004), 263 -320 | MR 2100057 | Zbl 1113.82070

, ,[24] The Vlasov–Poisson–Landau system in ${\mathbb{R}}^{3}$ , arXiv:1202.2471v1 (2012) | MR 3101794

, ,[25] On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan Acad. 50 (1974), 179 -184 | MR 363332 | Zbl 0312.35061

,[26] A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, vol. I, North-Holland, Amsterdam (2002), 71 -305 | MR 1942465 | Zbl 1170.82369

,[27] On the Cauchy problem for Landau equation: sequential stability, global existence, Adv. Differential Equations 1 no. 5 (1996), 793 -816 | MR 1392006 | Zbl 0856.35020

,[28] Global classical solution of the Vlasov–Maxwell–Landau system near Maxwellians, J. Math. Phys. 45 no. 11 (2004), 4360 -4376 | MR 2098143 | Zbl 1064.82035

,[29] Local existence of solutions to the Landau–Maxwell system, Math. Methods Appl. Sci. 17 no. 8 (1994), 613 -641 | MR 1280648 | Zbl 0803.35114

,