In arbitrary dimension, in the discrete setting of finite-differences we prove a Carleman estimate for a semi-discrete parabolic operator, in which the large parameter is connected to the mesh size. This estimate is applied for the derivation of a (relaxed) observability estimate, that yield some controlability results for semi-linear semi-discrete parabolic equations. Sub-linear and super-linear cases are considered.
Mots-clés : Parabolic operator, Semi-discrete Carleman estimates, Observability, Null controllability, Semi-linear equations
@article{AIHPC_2014__31_5_1035_0, author = {Boyer, Franck and Le Rousseau, J\'er\^ome}, title = {Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1035--1078}, publisher = {Elsevier}, volume = {31}, number = {5}, year = {2014}, doi = {10.1016/j.anihpc.2013.07.011}, mrnumber = {3258365}, zbl = {1302.35081}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2013.07.011/} }
TY - JOUR AU - Boyer, Franck AU - Le Rousseau, Jérôme TI - Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 1035 EP - 1078 VL - 31 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2013.07.011/ DO - 10.1016/j.anihpc.2013.07.011 LA - en ID - AIHPC_2014__31_5_1035_0 ER -
%0 Journal Article %A Boyer, Franck %A Le Rousseau, Jérôme %T Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 1035-1078 %V 31 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2013.07.011/ %R 10.1016/j.anihpc.2013.07.011 %G en %F AIHPC_2014__31_5_1035_0
Boyer, Franck; Le Rousseau, Jérôme. Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 5, pp. 1035-1078. doi : 10.1016/j.anihpc.2013.07.011. http://archive.numdam.org/articles/10.1016/j.anihpc.2013.07.011/
[1] Exact controllability of the superlinear heat equation, Appl. Math. Optim. 42 (2000), 73 -89 | MR | Zbl
,[2] Discrete Carleman estimates and uniform controllability of semi-discrete parabolic equations, J. Math. Pures Appl. 93 (2010), 240 -276 | MR | Zbl
, , ,[3] Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications, SIAM J. Control Optim. 48 (2010), 5357 -5397 | MR | Zbl
, , ,[4] Uniform null-controllability properties for space/time-discretized parabolic equations, Numer. Math. 118 (2011), 601 -661 | MR | Zbl
, , ,[5] A generalization of a lemma of bellman and its application to uniqueness problems of differential equations, Acta Math. Hung. 7 (1956), 81 -94 | MR | Zbl
,[6] On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems, http://hal.archives-ouvertes.fr/hal-00812964 | Zbl
,[7] Sur une problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astron. Fys. 26B no. 17 (1939), 1 -9 | MR | Zbl
,[8] On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 25 (2008), 1 -41 | EuDML | Numdam | MR | Zbl
, , ,[9] Global Carleman inequalities for parabolic systems and application to controllability, SIAM J. Control Optim. 45 no. 4 (2006), 1395 -1446 | MR | Zbl
, ,[10] Numerical null controllability of semi-linear 1D heat equations: Fixed point, least squares and Newton methods, Math. Control Relat. Fields 2 no. 3 (2012), 217 -246 | MR | Zbl
, ,[11] Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 17 (2000), 583 -616 | EuDML | Numdam | MR | Zbl
, ,[12] Controllability of Evolution Equations, Lecture Notes vol. 34 , Seoul National University, Korea (1996) | MR | Zbl
, ,[13] On the uniqueness of the Cauchy problem, Math. Scand. 6 (1958), 213 -225 | EuDML | MR | Zbl
,[14] Linear Partial Differential Operators, Springer-Verlag, Berlin (1963) | MR | Zbl
,[15] The Analysis of Linear Partial Differential Operators, vol. IV, Springer-Verlag (1985) | MR
,[16] Controllability of parabolic equations, Mat. Sb. (N.S.) 186 (1995), 109 -132 | MR
,[17] On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, ESAIM Control Optim. Calc. Var. 18 (2012), 712 -747 | EuDML | Numdam | MR | Zbl
, ,[18] Contrôle exact de l'équation de la chaleur, Commun. Partial Differ. Equ. 20 (1995), 335 -356 | MR | Zbl
, ,[19] Uniform controllability of semidiscrete approximations of parabolic control systems, Syst. Control Lett. 55 (2006), 597 -609 | MR | Zbl
, ,[20] Carleman estimates for parabolic equations and applications, Inverse Probl. 25 (2009), 123013 | MR | Zbl
,[21] Control and numerical approximation of the wave and heat equations, International Congress of Mathematicians, III, Madrid, Spain (2006), 1389 -1417 | MR | Zbl
,[22] Uniqueness and Non Uniqueness in the Cauchy Problem, Prog. Math. , Birkhäuser (1983) | MR | Zbl
,Cité par Sources :