Reconstruction of inhomogeneous conductivities via the concept of generalized polarization tensors
Annales de l'I.H.P. Analyse non linéaire, Volume 31 (2014) no. 5, p. 877-897

This paper extends the concept of generalized polarization tensors (GPTs), which was previously defined for inclusions with homogeneous conductivities, to inhomogeneous conductivity inclusions. We begin by giving two slightly different but equivalent definitions of the GPTs for inhomogeneous inclusions. We then show that, as in the homogeneous case, the GPTs are the basic building blocks for the far-field expansion of the voltage in the presence of the conductivity inclusion. Relating the GPTs to the Neumann-to-Dirichlet (NtD) map, it follows that the full knowledge of the GPTs allows unique determination of the conductivity distribution. Furthermore, we show important properties of the the GPTs, such as symmetry and positivity, and derive bounds satisfied by their harmonic sums. We also compute the sensitivity of the GPTs with respect to changes in the conductivity distribution and propose an algorithm for reconstructing conductivity distributions from their GPTs. This provides a new strategy for solving the highly nonlinear and ill-posed inverse conductivity problem. We demonstrate the viability of the proposed algorithm by preforming a sensitivity analysis and giving some numerical examples.

DOI : https://doi.org/10.1016/j.anihpc.2013.07.008
Classification:  35R30,  35C20
Keywords: Generalized polarization tensors, Inhomogeneous conductivity, Neumann-to-Dirichlet map, Asymptotic expansion, Inverse conductivity problem
@article{AIHPC_2014__31_5_877_0,
     author = {Ammari, Habib and Deng, Youjun and Kang, Hyeonbae and Lee, Hyundae},
     title = {Reconstruction of inhomogeneous conductivities via the concept of generalized polarization tensors},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {31},
     number = {5},
     year = {2014},
     pages = {877-897},
     doi = {10.1016/j.anihpc.2013.07.008},
     zbl = {1298.35247},
     mrnumber = {3258359},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2014__31_5_877_0}
}
Ammari, Habib; Deng, Youjun; Kang, Hyeonbae; Lee, Hyundae. Reconstruction of inhomogeneous conductivities via the concept of generalized polarization tensors. Annales de l'I.H.P. Analyse non linéaire, Volume 31 (2014) no. 5, pp. 877-897. doi : 10.1016/j.anihpc.2013.07.008. http://www.numdam.org/item/AIHPC_2014__31_5_877_0/

[1] H. Ammari, T. Boulier, J. Garnier, W. Jing, H. Kang, H. Wang, Target identification using dictionary matching of generalized polarization tensors, Found. Comput. Math. (2013), arXiv:1204.3035 | MR 3160706 | Zbl 1294.94006

[2] H. Ammari, T. Boulier, J. Garnier, H. Kang, H. Wang, Tracking of a mobile target using generalized polarization tensors, SIAM J. Imaging Sci. 6 (2013), 1477 -1498 | MR 3084172 | Zbl 1282.35407

[3] H. Ammari, J. Garnier, H. Kang, M. Lim, K. Sølna, Multistatic imaging of extended targets, SIAM J. Imaging Sci. 5 (2012), 564 -600 | MR 2971173 | Zbl 1344.78023

[4] H. Ammari, J. Garnier, H. Kang, M. Lim, S. Yu, Generalized polarization tensors for shape description, Numer. Math. (2013), http://dx.doi.org/10.1007/s00211-013-0561-5 | Zbl 1284.65072

[5] H. Ammari, J. Garnier, K. Sølna, Resolution and stability analysis in full-aperture, linearized conductivity and wave imaging, Proc. Am. Math. Soc. 141 (2013), 3431 -3446 | MR 3080166 | Zbl 1317.35291

[6] H. Ammari, H. Kang, Properties of generalized polarization tensors, Multiscale Model. Simul. 1 (2003), 335 -348 | MR 1990200 | Zbl 1060.35159

[7] H. Ammari, H. Kang, High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter, SIAM J. Math. Anal. 34 no. 5 (2003), 1152 -1166 | MR 2001663 | Zbl 1036.35050

[8] H. Ammari, H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Lect. Notes Math. vol. 1846 , Springer-Verlag, Berlin (2004) | MR 2168949 | Zbl 1113.35148

[9] H. Ammari, H. Kang, Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory, Appl. Math. Sci. vol. 162 , Springer-Verlag, New York (2007) | MR 2327884 | Zbl 1220.35001

[10] H. Ammari, H. Kang, Expansion methods, Handbook of Mathematical Mehtods of Imaging, Springer (2011), 447 -499 | Zbl 1259.00009

[11] H. Ammari, H. Kang, E. Kim, M. Lim, Reconstruction of closely spaced small inclusions, SIAM J. Numer. Anal. 42 (2005), 2408 -2428 | MR 2139399 | Zbl 1081.35133

[12] H. Ammari, H. Kang, H. Lee, M. Lim, Enhancement of near cloaking using generalized polarization tensors vanishing structures. Part I: The conductivity problem, Commun. Math. Phys. 317 (2013), 485 -502 | MR 3010374 | Zbl 1303.35108

[13] H. Ammari, H. Kang, K. Touibi, Boundary layer techniques for deriving the effective properties of composite materials, Asymptot. Anal. 41 (2005), 119 -140 | MR 2129229 | Zbl 1072.35020

[14] H. Ammari, H. Kang, M. Lim, H. Zribi, The generalized polarization tensors for resolved imaging. Part I: Shape reconstruction of a conductivity inclusion, Math. Comput. 81 (2012), 367 -386 | MR 2833499 | Zbl 1236.49084

[15] K. Astala, L. Päivärinta, Calderón's inverse conductivity problem in the plane, Ann. Math. 163 (2006), 265 -299 | MR 2195135 | Zbl 1111.35004

[16] G. Bao, S. Hou, P. Li, Recent studies on inverse medium scattering problems, Lect. Notes Comput. Sci. Eng. 59 (2007), 165 -186 | MR 2766829 | Zbl 1137.78011

[17] J. Bikowski, K. Knudsen, J.L. Mueller, Direct numerical reconstruction of conductivities in three dimensions using scattering transforms, Inverse Probl. 27 (2011) | MR 2746405 | Zbl 1232.78007

[18] L. Borcea, Electrical impedance tomography, Inverse Probl. 18 (2002), R99 -R136 | MR 1955896 | Zbl 1031.35147

[19] L. Borcea, G. Papanicolaou, F.G. Vasquez, Edge illumination and imaging of extended reflectors, SIAM J. Imaging Sci. 1 (2008), 75 -114 | MR 2475826 | Zbl 1132.35496

[20] M. Brühl, M. Hanke, M.S. Vogelius, A direct impedance tomography algorithm for locating small inhomogeneities, Numer. Math. 93 no. 4 (2003), 635 -654 | MR 1961882 | Zbl 1016.65079

[21] Y. Capdeboscq, A.B. Karrman, J.-C. Nédélec, Numerical computation of approximate generalized polarization tensors, Appl. Anal. 91 (2012), 1189 -1203 | MR 2926711 | Zbl 1248.78018

[22] Y. Capdeboscq, M.S. Vogelius, A general representation formula for the boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction, Math. Model. Numer. Anal. 37 (2003), 159 -173 | Numdam | MR 1972656 | Zbl 1137.35346

[23] M. Cheney, D. Isaacson, J.C. Newell, Electrical impedance tomography, SIAM Rev. 41 (1999), 85 -101 | MR 1669729 | Zbl 0927.35130

[24] G. Dassios, R.E. Kleinman, On Kelvin inversion and low-frequency scattering, SIAM Rev. 31 (1989), 565 -585 | MR 1025482 | Zbl 0703.35140

[25] H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer, Dordrecht (1996) | MR 1408680 | Zbl 0711.34018

[26] G.B. Folland, Introduction to Partial Differential Equations, Princeton University Press, Princeton, NJ (1976) | MR 599578 | Zbl 0371.35008

[27] A. Friedman, M. Vogelius, Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence, Arch. Ration. Mech. Anal. 105 (1989), 299 -326 | MR 973245 | Zbl 0684.35087

[28] H. Kang, J.K. Seo, Recent progress in the inverse conductivity problem with single measurement, Inverse Problems and Related Fields, CRC Press, Boca Raton, FL (2000), 69 -80 | MR 1761339 | Zbl 0963.35199

[29] R.V. Kohn, H. Shen, M.S. Vogelius, M.I. Weinstein, Cloaking via change of variables in electric impedance tomography, Inverse Probl. 24 (2008) | MR 2384775 | Zbl 1153.35406

[30] S.M. Kozlov, On the domain of variations of added masses, polarization and effective characteristics of composites, J. Appl. Math. Mech. 56 (1992), 102 -107 | MR 1164415 | Zbl 0786.76018

[31] R. Lipton, Inequalities for electric and elastic polarization tensors with applications to random composites, J. Mech. Phys. Solids 41 (1993), 809 -833 | MR 1214019 | Zbl 0797.73046

[32] G.W. Milton, The Theory of Composites, Cambridge Monogr. Appl. Comput. Math. , Cambridge University Press (2001) | MR 1899805 | Zbl 0631.73011

[33] L.J. Mueller, S. Siltanen, Direct reconstructions of conductivities from boundary measurements, SIAM J. Sci. Comput. 24 (2003), 1232 -1266 | MR 1976215 | Zbl 1031.78008

[34] G. Pólya, G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Ann. Math. Stud. vol. 27 , Princeton University Press, Princeton, NJ (1951) | MR 43486 | Zbl 0044.38301

[35] S. Nagayasu, G. Uhlmann, J.-N. Wang, Depth dependent stability estimates in electrical impedance tomography, Inverse Probl. 25 (2009) | MR 2519853 | Zbl 1172.35514

[36] J.-C. Nédélec, Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems, Appl. Math. Sci. vol. 144 , Springer-Verlag, New York (2001) | MR 1822275 | Zbl 0981.35002

[37] S. Siltanen, J.L. Mueller, D. Isaacson, Reconstruction of high contrast 2-D conductivities by the algorithm of A. Nachman, Contemp. Math. vol. 278 , Amer. Math. Soc., Providence, RI (2001), 241 -254 | MR 1851491 | Zbl 0989.65127

[38] J. Sylvester, G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. Math. 125 (1987), 153 -169 | MR 873380 | Zbl 0625.35078

[39] G.C. Verchota, Layer potentials and boundary value problems for Laplace's equation in Lipschitz domains, J. Funct. Anal. 59 (1984), 572 -611 | MR 769382 | Zbl 0589.31005