Almost reduction and perturbation of matrix cocycles
Annales de l'I.H.P. Analyse non linéaire, Volume 31 (2014) no. 6, p. 1101-1107
The full text of recent articles is available to journal subscribers only. See the article on the journal's website
In this note, we show that if all Lyapunov exponents of a matrix cocycle vanish, then it can be perturbed to become cohomologous to a cocycle taking values in the orthogonal group. This extends a result of Avila, Bochi and Damanik to general base dynamics and arbitrary dimension. We actually prove a fibered version of this result, and apply it to study the existence of dominated splittings into conformal subbundles for general matrix cocycles.
@article{AIHPC_2014__31_6_1101_0,
     author = {Bochi, Jairo and Navas, Andr\'es},
     title = {Almost reduction and perturbation of matrix cocycles},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {31},
     number = {6},
     year = {2014},
     pages = {1101-1107},
     doi = {10.1016/j.anihpc.2013.08.004},
     zbl = {1332.37026},
     mrnumber = {3280061},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2014__31_6_1101_0}
}
Bochi, Jairo; Navas, Andrés. Almost reduction and perturbation of matrix cocycles. Annales de l'I.H.P. Analyse non linéaire, Volume 31 (2014) no. 6, pp. 1101-1107. doi : 10.1016/j.anihpc.2013.08.004. http://www.numdam.org/item/AIHPC_2014__31_6_1101_0/

[1] A. Avila, J. Bochi, A uniform dichotomy for generic cocycles over a minimal base, Bull. Soc. Math. Fr. 135 no. 3 (2007), 407 -417 | Numdam | MR 2430187 | Zbl 1217.37017

[2] A. Avila, J. Bochi, D. Damanik, Cantor spectrum for Schrödinger operators with potentials arising from generalized skew-shifts, Duke Math. J. 146 no. 2 (2009), 253 -280 | MR 2477761 | Zbl 1165.37012

[3] A. Avila, J. Bochi, D. Damanik, Opening gaps in the spectrum of strictly ergodic Schrödinger operators, J. Eur. Math. Soc. 14 no. 1 (2012), 61 -106 | MR 2862034 | Zbl 1263.37007

[4] R. Bhatia, Positive Definite Matrices, Princeton University Press, Princeton (2007) | MR 3443454 | Zbl 1125.15300

[5] J. Bochi, Generic linear cocycles over a minimal base, Studia Math. (2013), arXiv:1302.5542 | MR 3125120 | Zbl 1286.37036

[6] J. Bochi, A. Navas, A geometric path from zero Lyapunov exponents to rotation cocycles, Ergod. Theory Dyn. Syst. (2013), http://dx.doi.org/10.1017/etds.2013.58, arXiv:1112.0397 | MR 3316917 | Zbl 06423375

[7] J. Bochi, M. Viana, The Lyapunov exponents of generic volume preserving and symplectic maps, Ann. Math. 161 no. 3 (2005), 1423 -1485 | MR 2180404 | Zbl 1101.37039

[8] C. Bonatti, L.J. Díaz, M. Viana, Dynamics Beyond Uniform Hyperbolicity, Springer (2005) | MR 2105774 | Zbl 1060.37020

[9] D. Coronel, A. Navas, M. Ponce, On bounded cocycles of isometries over a minimal dynamics, J. Mod. Dyn. 7 no. 1 (2013), 45 -77 , http://dx.doi.org/10.3934/jmd.2013.7.45, arXiv:1101.3523 | Zbl 06174320

[10] A. Furman, On the multiplicative ergodic theorem for uniquely ergodic systems, Ann. Inst. Henri Poincaré B, Probab. Stat. 33 (1997), 797 -815 | Numdam | MR 1484541 | Zbl 0892.60011

[11] N. Gourmelon, Adapted metrics for dominated splittings, Ergod. Theory Dyn. Syst. 27 no. 6 (2007), 1839 -1849 | MR 2371598 | Zbl 1127.37031

[12] B. Kalinin, V. Sadovskaya, Linear cocycles over hyperbolic systems and criteria of conformality, J. Mod. Dyn. 4 no. 3 (2010), 419 -441 | MR 2729329 | Zbl 1225.37062

[13] A. Katok, B. Hasselbatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press (1996) | MR 1326374

[14] G.K. Pedersen, M. Takesaki, The operator equation 𝑇𝐻𝑇=K , Proc. Am. Math. Soc. 36 no. 1 (1972), 311 -312 | MR 306958 | Zbl 0256.47020

[15] A.N. Quas, Rigidity of continuous coboundaries, Bull. Lond. Math. Soc. 29 (1997), 595 -600 | MR 1458721 | Zbl 0892.28011

[16] S.J. Schreiber, On growth rates of subadditive functions for semiflows, J. Differ. Equ. 148 (1998), 334 -350 | MR 1643183 | Zbl 0940.37007

[17] R. Sturman, J. Stark, Semi-uniform ergodic theorems and applications to forced systems, Nonlinearity 13 (2000), 113 -143 | MR 1734626 | Zbl 1005.37016