Perturbations of quadratic Hamiltonian two-saddle cycles
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 2, p. 307-324
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consulter l'article sur le site de la revue
We prove that the number of limit cycles which bifurcate from a two-saddle loop of a planar quadratic Hamiltonian system, under an arbitrary quadratic deformation, is less than or equal to three.
@article{AIHPC_2015__32_2_307_0,
     author = {Gavrilov, Lubomir and Iliev, Iliya D.},
     title = {Perturbations of quadratic Hamiltonian two-saddle cycles},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {32},
     number = {2},
     year = {2015},
     pages = {307-324},
     doi = {10.1016/j.anihpc.2013.12.001},
     zbl = {06444426},
     mrnumber = {3325239},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2015__32_2_307_0}
}
Gavrilov, Lubomir; Iliev, Iliya D. Perturbations of quadratic Hamiltonian two-saddle cycles. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 2, pp. 307-324. doi : 10.1016/j.anihpc.2013.12.001. http://www.numdam.org/item/AIHPC_2015__32_2_307_0/

[1] V.I. Arnol'D, V.S. Afrajmovich, Yu.S. Il'Yashenko, L.P. Shil'Nikov, Dynamical Systems V: Bifurcation Theory and Catastrophe Theory, Encyclopaedia Math. Sci. vol. 5 , Springer-Verlag, Berlin (1994), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (1986) | MR 895653 | Zbl 0797.58003

[2] Magdalena Caubergh, Freddy Dumortier, Stijn Luca, Cyclicity of unbounded semi-hyperbolic 2-saddle cycles in polynomial Liénard systems, Discrete Contin. Dyn. Syst. 27 no. 3 (2010), 963 -980 | MR 2629568 | Zbl 1200.34034

[3] Magdalena Caubergh, Freddy Dumortier, Robert Roussarie, Alien limit cycles near a Hamiltonian 2-saddle cycle, C. R. Math. Acad. Sci. Paris 340 no. 8 (2005), 587 -592 | MR 2138709 | Zbl 1083.34025

[4] Magdalena Caubergh, Freddy Dumortier, Robert Roussarie, Alien limit cycles in rigid unfoldings of a Hamiltonian 2-saddle cycle, Commun. Pure Appl. Anal. 6 no. 1 (2007), 1 -21 | MR 2276327 | Zbl 1138.34020

[5] Shui-Nee Chow, Chengzhi Li, Yingfei Yi, The cyclicity of period annuli of degenerate quadratic Hamiltonian systems with elliptic segment loops, Ergod. Theory Dyn. Syst. 22 no. 2 (2002), 349 -374 | MR 1898796 | Zbl 1094.34020

[6] B. Coll, F. Dumortier, R. Prohens, Alien limit cycles in Liénard equations, J. Differ. Equ. 254 no. 3 (2013), 1582 -1600 | MR 2997384 | Zbl 1262.34036

[7] W.A. Coppel, A survey of quadratic systems, J. Differ. Equ. 2 (1966), 293 -304 | MR 196182 | Zbl 0143.11903

[8] F. Dumortier, R. Roussarie, C. Rousseau, Hilbert's 16th problem for quadratic vector fields, J. Differ. Equ. 110 no. 1 (1994), 86 -133 | MR 1275749 | Zbl 0802.34028

[9] F. Dumortier, R. Roussarie, J. Sotomayor, H. Żołądek, Bifurcations of planar vector fields, Nilpotent Singularities and Abelian Integrals, Lect. Notes Math. vol. 1480 , Springer-Verlag, Berlin (1991) | MR 1166189 | Zbl 0755.58002

[10] Freddy Dumortier, Robert Roussarie, Abelian integrals and limit cycles, J. Differ. Equ. 227 no. 1 (2006), 116 -165 | MR 2233957 | Zbl 1111.34028

[11] J.-P. Françoise, Successive derivatives of a first return map, application to the study of quadratic vector fields, Ergod. Theory Dyn. Syst. 16 no. 1 (1996), 87 -96 | MR 1375128 | Zbl 0852.34008

[12] Lubomir Gavrilov, The infinitesimal 16th Hilbert problem in the quadratic case, Invent. Math. 143 no. 3 (2001), 449 -497 | MR 1817642 | Zbl 0979.34024

[13] Lubomir Gavrilov, Cyclicity of period annuli and principalization of Bautin ideals, Ergod. Theory Dyn. Syst. 28 no. 5 (2008), 1497 -1507 | MR 2449540 | Zbl 1172.37020

[14] Lubomir Gavrilov, On the number of limit cycles which appear by perturbation of Hamiltonian two-saddle cycles of planar vector fields, Bull. Braz. Math. Soc. 42 no. 1 (2011), 1 -23 | MR 2774172 | Zbl 1234.34025

[15] Lubomir Gavrilov, On the number of limit cycles which appear by perturbation of two-saddle cycles of planar vector fields, Funct. Anal. Appl. 47 no. 3 (2013), 174 -186 | MR 3154836 | Zbl 1310.34043

[16] Lubomir Gavrilov, Iliya D. Iliev, Second-order analysis in polynomially perturbed reversible quadratic Hamiltonian systems, Ergod. Theory Dyn. Syst. 20 no. 6 (2000), 1671 -1686 | MR 1804952 | Zbl 0992.37054

[17] Lubomir Gavrilov, Iliya D. Iliev, The displacement map associated to polynomial unfoldings of planar Hamiltonian vector fields, Am. J. Math. 127 no. 6 (2005), 1153 -1190 | MR 2183522 | Zbl 1093.34015

[18] Yue He, Chengzhi Li, On the number of limit cycles arising from perturbations of homoclinic loops of quadratic integrable systems, Planar Nonlinear Dynamical Systems Delft, 1995 Differ. Equ. Dyn. Syst. 5 no. 3–4 (1997), 303 -316 | MR 1660206 | Zbl 0898.34025

[19] E. Horozov, I.D. Iliev, On saddle-loop bifurcations of limit cycles in perturbations of quadratic Hamiltonian systems, J. Differ. Equ. 113 no. 1 (1994), 84 -105 | MR 1296162 | Zbl 0808.34041

[20] E. Horozov, I.D. Iliev, On the number of limit cycles in perturbations of quadratic Hamiltonian systems, Proc. Lond. Math. Soc. 69 no. 1 (1994), 198 -224 | MR 1272426 | Zbl 0802.58046

[21] I.D. Iliev, Higher-order Melnikov functions for degenerate cubic Hamiltonians, Adv. Differ. Equ. 1 no. 4 (1996), 689 -708 | MR 1401409 | Zbl 0851.34042

[22] Iliya D. Iliev, Perturbations of quadratic centers, Bull. Sci. Math. 122 no. 2 (1998), 107 -161 | MR 1612784 | Zbl 0920.34037

[23] Yu. Ilyashenko, Centennial history of Hilbert's 16th problem, Bull., New Ser., Am. Math. Soc. 39 no. 3 (2002), 301 -354 | MR 1898209 | Zbl 1004.34017

[24] Yulij Ilyashenko, Sergei Yakovenko, Lectures on Analytic Differential Equations, Grad. Stud. Math. vol. 86 , American Mathematical Society, Providence, RI (2008) | MR 2363178 | Zbl 1186.34001

[25] Chengzhi Li, Robert Roussarie, The cyclicity of the elliptic segment loops of the reversible quadratic Hamiltonian systems under quadratic perturbations, J. Differ. Equ. 205 no. 2 (2004), 488 -520 | MR 2092868 | Zbl 1071.34032

[26] Stijn Luca, Freddy Dumortier, Magdalena Caubergh, Robert Roussarie, Detecting alien limit cycles near a Hamiltonian 2-saddle cycle, Discrete Contin. Dyn. Syst. 25 no. 4 (2009), 1081 -1108 | MR 2552129 | Zbl 1194.34084

[27] G.S. Petrov, The Chebyshev property of elliptic integrals, Funkc. Anal. Prilozh. 22 no. 1 (1988), 83 -84 | MR 936711 | Zbl 0645.33003

[28] G.S. Petrov, Nonoscillation of elliptic integrals, Funkc. Anal. Prilozh. 24 no. 3 (1990), 45 -50 | MR 1082030

[29] I.G. Petrovskiĭ, E.M. Landis, On the Number of Limit Cycles of the Equation dy/dx=P(x,y)/Q(x,y), where P and Q are Polynomials of the Second Degree, Transl. Am. Math. Soc. vol. 10 , American Mathematical Society, Providence, RI (1958), 177 -221 | Zbl 0080.07502

[30] R. Roussarie, A note on finite cyclicity property and Hilbert's 16th problem, Dynamical Systems, Valparaiso, 1986, Lect. Notes Math. vol. 1331 , Springer, Berlin (1988), 161 -168 | MR 961099 | Zbl 0676.58046

[31] Robert Roussarie, Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem, Prog. Math. vol. 164 , Birkhäuser Verlag, Basel (1998) | MR 1628014 | Zbl 0898.58039

[32] Robert Roussarie, Melnikov functions and Bautin ideal, Qual. Theory Dyn. Syst. 2 no. 1 (2001), 67 -78 | MR 1844978 | Zbl 1081.37030

[33] Song Ling Shi, A concrete example of the existence of four limit cycles for plane quadratic systems, Sci. Sin. 23 no. 2 (1980), 153 -158 | MR 574405 | Zbl 0431.34024

[34] Yulin Zhao, Siming Zhu, Perturbations of the non-generic quadratic Hamiltonian vector fields with hyperbolic segment, Bull. Sci. Math. 125 no. 2 (2001), 109 -138 | MR 1812160 | Zbl 1001.34024

[35] Henryk Żołądek, The cyclicity of triangles and segments in quadratic systems, J. Differ. Equ. 122 no. 1 (1995), 137 -159 | MR 1356133 | Zbl 0840.34031