The generalized principal eigenvalue for Hamilton–Jacobi–Bellman equations of ergodic type
Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 3, p. 623-650
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

This paper is concerned with the generalized principal eigenvalue for Hamilton–Jacobi–Bellman (HJB) equations arising in a class of stochastic ergodic control. We give a necessary and sufficient condition so that the generalized principal eigenvalue of an HJB equation coincides with the optimal value of the corresponding ergodic control problem. We also investigate some qualitative properties of the generalized principal eigenvalue with respect to a perturbation of the potential function.

DOI : https://doi.org/10.1016/j.anihpc.2014.02.003
Classification:  35Q93,  60J60,  93E20
Keywords: Principal eigenvalue, Hamilton–Jacobi–Bellman equation, Ergodic control, Recurrence and transience
@article{AIHPC_2015__32_3_623_0,
     author = {Ichihara, Naoyuki},
     title = {The generalized principal eigenvalue for Hamilton--Jacobi--Bellman equations of ergodic type},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {32},
     number = {3},
     year = {2015},
     pages = {623-650},
     doi = {10.1016/j.anihpc.2014.02.003},
     zbl = {1322.35142},
     mrnumber = {3353703},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2015__32_3_623_0}
}
Ichihara, Naoyuki. The generalized principal eigenvalue for Hamilton–Jacobi–Bellman equations of ergodic type. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 3, pp. 623-650. doi : 10.1016/j.anihpc.2014.02.003. http://www.numdam.org/item/AIHPC_2015__32_3_623_0/

[1] A. Arapostathis, V.S. Borkar, A relative value iteration algorithm for nondegenerate controlled diffusions, SIAM J. Control Optim. 50 (2012), 1886 -1902 | MR 2974722 | Zbl 1252.93125

[2] A. Arapostathis, V.S. Borkar, M.K. Ghosh, Ergodic Control of Diffusion Processes, Encycl. Math. Appl. vol. 143 , Cambridge University Press, Cambridge, UK (2011) | MR 2884272

[3] M. Bardi, A. Cesaroni, Optimal control with random parameters: a multiscale approach, Eur. J. Control 17 (2011), 30 -45 | MR 2797195 | Zbl 1248.49038

[4] M. Bardi, A. Cesaroni, L. Manca, Convergence by viscosity methods in multiscale financial models with stochastic volatility, SIAM J. Financ. Math. 1 (2010), 230 -265 | MR 2658580 | Zbl 1189.35020

[5] A. Bensoussan, J. Frehse, Bellman equations of ergodic control in N , J. Reine Angew. Math. 429 (1992), 125 -160 | MR 1173120 | Zbl 0779.35038

[6] V.I. Bogachev, N.V. Krylov, M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions, Commun. Partial Differ. Equ. 26 (2001), 2037 -2080 | MR 1876411 | Zbl 0997.35012

[7] H. Berestycki, L. Nirenberg, S.R.S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Commun. Pure Appl. Math. 47 (1994), 47 -92 | Zbl 0806.35129

[8] W.H. Fleming, M. Soner, Controlled Markov Processes and Viscosity Solutions, Appl. Math. vol. 25 , Springer-Verlag, New York (1993) | MR 1199811 | Zbl 0773.60070

[9] H. Hata, H. Nagai, S.J. Sheu, Asymptotics of the probability minimizing a “down side” risk, Ann. Appl. Probab. 20 (2010), 52 -89 | MR 2582642 | Zbl 1194.93220

[10] N. Ichihara, Recurrence and transience of optimal feedback processes associated with Bellman equations of ergodic type, SIAM J. Control Optim. 49 (2011), 1938 -1960 | MR 2837506 | Zbl 1252.60078

[11] N. Ichihara, Large time asymptotic problems for optimal stochastic control with superlinear cost, Stoch. Process. Appl. 122 (2012), 1248 -1275 | MR 2914752 | Zbl 1243.93132

[12] N. Ichihara, Criticality of viscous Hamilton–Jacobi equations and stochastic ergodic control, J. Math. Pures Appl. 100 (2013), 368 -390 | MR 3095206 | Zbl 1295.35092

[13] N. Ichihara, S.J. Sheu, Large time behavior of solutions of Hamilton–Jacobi–Bellman equations with quadratic nonlinearity in gradients, SIAM J. Math. Anal. 45 (2013), 279 -306 | MR 3032978 | Zbl 1264.35043

[14] H. Kaise, S.J. Sheu, Evaluation of large time expectations for diffusion processes, unpublished preprint.

[15] H. Kunita, Stochastic Flows and Stochastic Differential Equations, Camb. Stud. Adv. Math. vol. 24 (1990) | MR 1070361 | Zbl 0743.60052

[16] P.-L. Lions, Résolution de problèmes elliptiques quasilinéaires, Arch. Ration. Mech. Anal. 74 (1980), 335 -353 | MR 588033 | Zbl 0449.35036

[17] P.-L. Lions, Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre, J. Anal. Math. 45 (1985), 234 -254 | MR 833413 | Zbl 0614.35034

[18] M. Murata, Structure of positive solutions to (-Δ+V)u=0 in n , Duke Math. J. 53 (1986), 869 -943 | MR 874676 | Zbl 0624.35023

[19] H. Nagai, Down side risk minimization via a large deviations approach, Ann. Appl. Probab. 22 (2012), 608 -669 | MR 2953565 | Zbl 1242.91223

[20] Y. Pinchover, On positive solutions of second order elliptic equations, stability results and classification, Duke Math. J. 57 (1988), 955 -980 | MR 975130 | Zbl 0685.35035

[21] Y. Pinchover, Criticality and ground states for second order elliptic equations, J. Differ. Equ. 80 (1989), 237 -250 | MR 1011149 | Zbl 0697.35036

[22] Y. Pinchover, On criticality and ground states for second order elliptic equations, II, J. Differ. Equ. 87 (1990), 353 -364 | MR 1072906 | Zbl 0714.35055

[23] R.G. Pinsky, Positive Harmonic Functions and Diffusion, Camb. Stud. Adv. Math. vol. 45 (1995) | MR 1326606

[24] B. Simon, Large time behavior of the L p norm of Schrödinger semigroups, J. Funct. Anal. 40 (1981), 66 -83 | MR 607592 | Zbl 0478.47024

[25] M. Takeda, K. Tsuchida, Criticality of generalized Schrödinger operators and differentiability of spectral functions, Stochastic Analysis and Related Topics in Kyoto, Adv. Stud. Pure Math. vol. 41 , Math. Soc. Japan, Tokyo (2004), 333 -350 | MR 2083718 | Zbl 1063.60109