Asymptotic analysis of solutions to a gauged O(3) sigma model
Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 3, p. 651-685
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

We analyze an elliptic equation arising in the study of the gauged O(3) sigma model with the Chern–Simons term. In this paper, we study the asymptotic behavior of solutions and apply it to prove the uniqueness of stable solutions. However, one of the features of this nonlinear equation is the existence of stable nontopological solutions in 2 , which implies the possibility that a stable solution which blows up at a vortex point exists. To exclude this kind of blow up behavior is one of the main difficulties which we have to overcome.

DOI : https://doi.org/10.1016/j.anihpc.2014.03.001
Keywords: Gauged O(3) sigma models, Blow up analysis, Pohozaev type identity, Stable solutions
@article{AIHPC_2015__32_3_651_0,
     author = {Bartolucci, Daniele and Lee, Youngae and Lin, Chang-Shou and Onodera, Michiaki},
     title = {Asymptotic analysis of solutions to a gauged $ \mathrm{O}(3)$ sigma model},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {32},
     number = {3},
     year = {2015},
     pages = {651-685},
     doi = {10.1016/j.anihpc.2014.03.001},
     zbl = {1321.35239},
     mrnumber = {3353704},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2015__32_3_651_0}
}
Bartolucci, Daniele; Lee, Youngae; Lin, Chang-Shou; Onodera, Michiaki. Asymptotic analysis of solutions to a gauged $ \mathrm{O}(3)$ sigma model. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 3, pp. 651-685. doi : 10.1016/j.anihpc.2014.03.001. http://www.numdam.org/item/AIHPC_2015__32_3_651_0/

[1] K. Arthur, D. Tchrakian, Y. Yang, Topological and nontopological self-dual Chern–Simons solitons in a gauged O(3) model, Phys. Rev. D 54 (1996), 5245 -5258 | MR 1423791

[2] D. Bartolucci, G. Tarantello, Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory, Commun. Math. Phys. 229 (2002), 3 -47 | MR 1917672 | Zbl 1009.58011

[3] A.A. Belavin, A.M. Polyakov, Metastable states of two dimensional isotropic ferromagnets, JETP Lett. 22 (1975), 245 -247

[4] D. Chae, H.-S. Nam, Multiple existence of the multivortex solutions of the self-dual Chern–Simons CP(1) model on a doubly periodic domain, Lett. Math. Phys. 49 (1999), 297 -315 | MR 1749573 | Zbl 1015.81037

[5] K.-S. Cheng, C.-S. Lin, On the asymptotic behavior of solutions of the conformal Gaussian curvature equations in 2 , Math. Ann. 308 (1997), 119 -139 | MR 1446203 | Zbl 0871.35014

[6] K. Choe, Existence of nontopological solutions in the Chern–Simons gauged O(3) sigma models, preprint.

[7] K. Choe, J. Han, Existence and properties of radial solutions in the self-dual Chern–Simons O(3) sigma model, J. Math. Phys. 52 (2011), 082301 | MR 2858042 | Zbl 1272.81112

[8] K. Choe, J. Han, C.-S. Lin, T.-C. Lin, Uniqueness and solution structure of nonlinear equations arising from the Chern–Simons gauged O(3) sigma models, J. Differ. Equ. 255 (2013), 2136 -2166 | MR 3082457 | Zbl 1287.81079

[9] K. Choe, N. Kim, Blow-up solutions of the self-dual Chern–Simons–Higgs vortex equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 25 (2008), 313 -338 | Numdam | MR 2396525 | Zbl 1145.35029

[10] K. Choe, N. Kim, C.-S. Lin, Existence of self-dual non-topological solutions in the Chern–Simons Higgs model, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28 (2011), 837 -852 | Numdam | MR 2859930 | Zbl 1232.81031

[11] K. Choe, H.-S. Nam, Existence and uniqueness of topological multivortex solutions of the self-dual Chern–Simons CP(1) model, Nonlinear Anal. 66 (2007), 2794 -2813 | MR 2311639 | Zbl 1206.35100

[12] B. Gidas, W.-M. Ni, L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equation in n , Mathematical Analysis and Applications, Part A, Adv. Math. Suppl. Stud. vol. 7A , Academic Press, New York–London (1981), 369 -402

[13] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, vol. 224, Springer, Berlin (1983) | MR 737190 | Zbl 0691.35001

[14] P.K. Ghosh, S.K. Ghosh, Topological and nontopological solitons in a gauged O(3) sigma model with Chern–Simons term, Phys. Lett. B 366 (1996), 199 -204 | MR 1371549

[15] J. Han, Existence of topological multivortex solutions in the self-dual gauge theories, Proc. R. Soc. Edinb. A 130 (2000), 1293 -1309 | MR 1809105 | Zbl 0977.35138

[16] J. Hong, Y. Kim, P.Y. Pac, Multi-vortex solutions of the Abelian Chern–Simons–Higgs theory, Phys. Rev. Lett. 64 (1990), 2230 -2233 | MR 1050529 | Zbl 1014.58500

[17] R. Jackiw, E.J. Weinberg, Self-dual Chern–Simons vortices, Phys. Rev. Lett. 64 (1990), 2234 -2237 | MR 1050530 | Zbl 1050.81595

[18] K. Kimm, K. Lee, T. Lee, Anyonic Bogomol'nyi solitons in a gauged O(3) sigma model, Phys. Rev. D 53 (1996), 4436 -4440

[19] K. Kimm, K. Lee, T. Lee, The self-dual Chern–Simons CP(N) models, Phys. Rev. Lett. B 380 (1996), 303 -307 | MR 1398394

[20] C.-S. Lin, S. Yan, Bubbling solutions for relativistic abelian Chern–Simons model on a torus, Commun. Math. Phys. 297 (2010), 733 -758 | MR 2653901 | Zbl 1195.35150

[21] C.-S. Lin, S. Yan, Existence of bubbling solutions for Chern–Simons model on a torus, Arch. Ration. Mech. Anal. 207 (2013), 353 -392 | MR 3005320 | Zbl 1260.35155

[22] M. Nolasco, G. Tarantello, Double vortex condensates in the Chern–Simons–Higgs theory, Calc. Var. Partial Differ. Equ. 9 (1999), 31 -94 | MR 1710938 | Zbl 0951.58030

[23] B.J. Schroers, Bogomol'nyi solitons in a gauged O(3) sigma model, Phys. Lett. B 356 (1995), 291 -296 | MR 1346723

[24] J. Spruck, Y. Yang, The existence of nontopological solitons in the self-dual Chern–Simons theory, Commun. Math. Phys. 149 (1992), 361 -376 | MR 1186034 | Zbl 0760.53063

[25] G. 'T Hooft, A property of electric and magnetic flux in nonabelian gauge theories, Nucl. Phys. B 153 (1979), 141 -160 | MR 535106

[26] G. Tarantello, Uniqueness of selfdual periodic Chern–Simons vortices of topological-type, Calc. Var. Partial Differ. Equ. 29 (2007), 191 -217 | MR 2307772 | Zbl 1123.35050

[27] G. Tarantello, Selfdual Gauge Field Vortices. An Analytical Approach, Prog. Nonlinear Differ. Equ. Appl. , Birkhäuser Boston, Inc., Boston (2008) | MR 2403854

[28] Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monogr. Math. , Springer-Verlag, New York (2001) | MR 1838682