A generalization of Marstrand's theorem for projections of cartesian products
Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 4, p. 833-840
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

We prove the following variant of Marstrand's theorem about projections of cartesian products of sets:Let ${K}_{1},\cdots ,{K}_{n}$ be Borel subsets of ${ℝ}^{{m}_{1}},\cdots ,{ℝ}^{{m}_{n}}$ respectively, and $\pi :{ℝ}^{{m}_{1}}×\cdots ×{ℝ}^{{m}_{n}}\to {ℝ}^{k}$ be a surjective linear map. We set $𝔪:=\mathrm{min}\left\{\sum _{i\in I}{\mathrm{dim}}_{H}\left({K}_{i}\right)+\mathrm{dim}\pi \left(\underset{i\in {I}^{c}}{⨁}{ℝ}^{{m}_{i}}\right),\phantom{\rule{0.166667em}{0ex}}I\subset \left\{1,\cdots ,n\right\},\phantom{\rule{0.166667em}{0ex}}I\ne ⌀\right\}.$ Consider the space ${\Lambda }_{m}=\left\{\left(t,O\right),\phantom{\rule{0.166667em}{0ex}}t\in ℝ,\phantom{\rule{0.166667em}{0ex}}O\in \mathrm{𝑆𝑂}\left(m\right)\right\}$ with the natural measure and set $\Lambda ={\Lambda }_{{m}_{1}}×\cdots ×{\Lambda }_{{m}_{n}}$. For every $\lambda =\left({t}_{1},{O}_{1},\cdots ,{t}_{n},{O}_{n}\right)\in \Lambda$ and every $x=\left({x}^{1},\cdots ,{x}^{n}\right)\in {ℝ}^{{m}_{1}}×\cdots ×{ℝ}^{{m}_{n}}$ we define ${\pi }_{\lambda }\left(x\right)=\pi \left({t}_{1}{O}_{1}{x}^{1},\cdots ,{t}_{n}{O}_{n}{x}^{n}\right)$. Then we have Theorem (i) If $𝔪>k$ , then ${\pi }_{\lambda }\left({K}_{1}×\cdots ×{K}_{n}\right)$ has positive k-dimensional Lebesgue measure for almost every $\lambda \in \Lambda$ . (ii) If $𝔪⩽k$ and ${\mathrm{dim}}_{H}\left({K}_{1}×\cdots ×{K}_{n}\right)={\mathrm{dim}}_{H}\left({K}_{1}\right)+\cdots +{\mathrm{dim}}_{H}\left({K}_{n}\right)$ , then ${\mathrm{dim}}_{H}\left({\pi }_{\lambda }\left({K}_{1}×\cdots ×{K}_{n}\right)\right)=𝔪$ for almost every $\lambda \in \Lambda$ .

DOI : https://doi.org/10.1016/j.anihpc.2014.04.002
Keywords: Fractal geometry, Hausdorff dimensions, Potential theory, Fourier transform, Dynamical systems
@article{AIHPC_2015__32_4_833_0,
author = {L\'opez, Jorge Erick and Moreira, Carlos Gustavo},
title = {A generalization of Marstrand's theorem for projections of cartesian products},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
publisher = {Elsevier},
volume = {32},
number = {4},
year = {2015},
pages = {833-840},
doi = {10.1016/j.anihpc.2014.04.002},
zbl = {1321.28019},
mrnumber = {3390086},
language = {en},
url = {http://www.numdam.org/item/AIHPC_2015__32_4_833_0}
}

López, Jorge Erick; Moreira, Carlos Gustavo. A generalization of Marstrand's theorem for projections of cartesian products. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 4, pp. 833-840. doi : 10.1016/j.anihpc.2014.04.002. http://www.numdam.org/item/AIHPC_2015__32_4_833_0/

 M. Hochman, P. Shmerkin, Local entropy averages and projections of fractal measures, Ann. Math. 175 no. 3 (2012), 1001 -1059 | MR 2912701 | Zbl 1251.28008

 R. Kaufman, On Hausdorff dimension of projections, Mathematika 15 (1968), 153 -155 | MR 248779 | Zbl 0165.37404

 J.M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. Lond. Math. Soc. (3) 4 (1954), 257 -302 | MR 63439 | Zbl 0056.05504

 P. Mattila, Hausdorff dimension, orthogonal projections and intersections with planes, Ann. Acad. Sci. Fenn., Math. 1 (1975), 227 -244 | MR 409774 | Zbl 0348.28019

 P. Mattila, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, Cambridge University Press (1995) | MR 1333890 | Zbl 0819.28004

 C.G. Moreira, J.-C. Yoccoz, Stable intersection of regular cantor sets with large Hausdorff dimensions, Ann. Math. 154 no. 1 (2001), 45 -96 | MR 1847588 | Zbl 1195.37015

 Y. Peres, W. Schalg, Smoothness of projections, Bernoulli convolutions, and the dimensions of exceptions, Duke Math. J. 102 no. 2 (2000), 193 -251 | MR 1749437 | Zbl 0961.42007

 A. Schrijver, Theory of Linear and Integer Programming, Wiley–Interscience, Chichester (1986) | MR 874114 | Zbl 0665.90063